1
|
Chavda VP, Pandya A, Pulakkat S, Soniwala M, Patravale V. Lymphatic filariasis vaccine development: neglected for how long? Expert Rev Vaccines 2021; 20:1471-1482. [PMID: 34633881 DOI: 10.1080/14760584.2021.1990760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Lymphatic filariasis (LF), also known as elephantiasis, has been recognized by the world health organization and the centers for disease control and prevention as one of the neglected tropical diseases. The huge prevalence and risk of manifestation to date reflect the poor management of this disease. The disease poses vast public health and socio-economic burdens and generates a dire need for the development of a prophylactic solution for mass administration. AREAS COVERED Vaccination has been a sought-out strategy for dealing with ever-evolving infectious diseases and can be duly tuned to become a cost effective means of disease control and eventual eradication. In this review, we highlight the epidemiology of LF with the current diagnosis and treatment modules. The need for the development of a potential vaccine candidates, and challenges are discussed. The evidence presented in this review aims to enlighten the readers regarding the essential factors governing LF and its management using prophylactic measures. EXPERT OPINION The complex nature of filarial parasites is evident from the absence of a single vaccine for LF. The development and selection of an appropriate preclinical model and its translation into clinical practice is deemed to be a major task needing in-depth evaluation to formulate an effective vaccine. Explorations of the existing vaccine platforms would serve to be an apt strategy in this direction.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sreeranjini Pulakkat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Moinuddin Soniwala
- Department of Pharmaceutics, B K Modi Government Pharmacy College, Rajkot, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
2
|
Jha R, Gangwar M, Chahar D, Setty Balakrishnan A, Negi MPS, Misra-Bhattacharya S. Humans from Wuchereria bancrofti endemic area elicit substantial immune response to proteins of the filarial parasite Brugia malayi and its endosymbiont Wolbachia. Parasit Vectors 2017; 10:40. [PMID: 28118850 PMCID: PMC5259955 DOI: 10.1186/s13071-016-1963-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the past, immune responses to several Brugia malayi immunodominant antigens have been characterized in filaria-infected populations; however, little is known regarding Wolbachia proteins. We earlier cloned and characterized few B. malayi (trehalose-6-phosphate phosphatase, Bm-TPP and heavy chain myosin, BmAF-Myo) and Wolbachia (translation initiation factor-1, Wol Tl IF-1 and NAD+-dependent DNA ligase, wBm-LigA) proteins and investigated the immune responses, which they triggered in animal models. The current study emphasizes on immunological characteristics of these proteins in three major categories of filarial endemic zones: endemic normal (EN, asymptomatic, amicrofilaraemic; putatively immune), microfilariae carriers (MF, asymptomatic but microfilaraemic), and chronic filarial patients (CP, symptomatic and mostly amicrofilaraemic). METHODS Immunoblotting and ELISA were carried out to measure IgG and isotype antibodies against these recombinant proteins in various clinical categories. Involvement of serum antibodies in infective larvae killing was assessed by antibody-dependent cellular adhesion and cytotoxicity assay. Cellular immune response was investigated by in vitro proliferation of peripheral blood mononuclear cells (PBMCs) and reactive oxygen species (ROS) generation in these cells after stimulation. RESULTS Immune responses of EN and CP displayed almost similar level of IgG to Wol Tl IF-1 while other three proteins had higher serum IgG in EN individuals only. Specific IgA, IgG1, IgG3 and IgM to Bm-TPP were high in EN subjects, while BmAF-Myo additionally showed elevated IgG2. Enhanced IgA and IgG3 were detected in both EN and CP individuals in response to Wol Tl IF-1 antigen, but IgG1 and IgM were high only in EN individuals. wBm-LigA and BmAF-Myo exhibited almost similar pattern of antibody responses. PBMC isolated from EN subjects exhibited higher proliferation and ROS generation when stimulated with all three proteins except for Wol Tl IF-1. CONCLUSIONS Overall, these findings display high immunogenicity of all four proteins in human subjects and revealed that the EN population was exposed to both B. malayi and Wolbachia proteins simultaneously. In addition, immune responses to Wol Tl IF-1 suggest possible role of this factor in Wolbachia-induced pathological responses while immune responses to other three proteins suggest that these can be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Ruchi Jha
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow, UP, 226031, India
| | - Mamta Gangwar
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow, UP, 226031, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow, UP, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Palkalai Nagar, Madurai, TN, 625021, India
| | - Mahendra Pal Singh Negi
- Biometry and Statistics Division, CSIR-Central Drug Research Institute, BS 10/1, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow, UP, 226031, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow, UP, 226031, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
3
|
Gupta J, Misra S, Misra-Bhattacharya S. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha. PLoS One 2016; 11:e0164991. [PMID: 27828973 PMCID: PMC5102438 DOI: 10.1371/journal.pone.0164991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo) as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3) to next stage (L4) with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha) which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC) to microfilariae (mf) and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccination method against LF.
Collapse
Affiliation(s)
- Jyoti Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sweta Misra
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
- * E-mail: ;
| |
Collapse
|
4
|
Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection. PLoS Negl Trop Dis 2016; 10:e0004586. [PMID: 27045170 PMCID: PMC4821550 DOI: 10.1371/journal.pntd.0004586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. Onchocerciasis and Lymphatic filariasis (LF) are debilitating neglected tropical diseases (NTDs). Practical challenges in implementation of mass drug administration (MDA) such as prolonged treatment regime requirements and the possible emergence of drug resistance will likely impede the elimination of these NTDs. Hence, the availability of an efficacious prophylactic vaccine would be an invaluable tool. The objective of the present studies was to use the B. malayi-gerbil model of filariasis as a surrogate system to test the efficacy of filarial molecules as vaccine targets for an onchocerciasis vaccine. The vaccine efficacy of Onchocerca volvulus recombinant proteins Ov-RAL-2 and Ov-103 was recently demonstrated using a mouse diffusion chamber model. In this communication, we provide encouraging results on the vaccine efficacy of Bm-RAL-2 and Bm-103, individually or in combination. Our data demonstrate that vaccination with Bm-RAL-2 and Bm-103 concurrently and as a fusion protein confers not only a consistent and significant protection against B. malayi infection in gerbils, but also reduces the fecundity of female worms as demonstrated in embryogram analyses. Our results support the contention that Ov-RAL-2 and Ov-103 are excellent onchocerciasis vaccine candidates and that further investigations leading to their development as a vaccine are warranted.
Collapse
|
5
|
Saini V, Verma AK, Kushwaha V, Joseph SK, Kalpna Murthy P, Kohli D. Humoral and cell-mediated immune responses elicited by poly (dl-lactide) adjuvanted filarial antigen molecules. Drug Deliv 2013; 21:233-41. [DOI: 10.3109/10717544.2013.848494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Kushwaha S, Singh PK, Rana AK, Misra-Bhattacharya S. Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection. PLoS One 2013; 8:e72585. [PMID: 24015262 PMCID: PMC3755969 DOI: 10.1371/journal.pone.0072585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF).
Collapse
Affiliation(s)
- Susheela Kushwaha
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Prashant Kumar Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar Rana
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
7
|
Shrivastava N, Singh PK, Nag JK, Kushwaha S, Misra-Bhattacharya S. Immunization with a multisubunit vaccine considerably reduces establishment of infective larvae in a rodent model of Brugia malayi. Comp Immunol Microbiol Infect Dis 2013; 36:507-19. [PMID: 23829972 DOI: 10.1016/j.cimid.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 02/20/2013] [Accepted: 05/03/2013] [Indexed: 11/28/2022]
Abstract
Although recombinant vaccines have several advantages over conventional vaccines, protection induced by single antigen vaccines is often inadequate for a multicellular helminth parasite. Therefore, immunoprophylactic efficacy of cocktail antigen vaccines comprised of several combinations of three Brugia malayi recombinant proteins BmAF-Myo, Bm-iPGM and Bm-TPP were evaluated. Myosin+TPP and iPGM+TPP provided the best protection upon B. malayi infective larval challenge with ∼70% reduction in adult worm establishment over non-vaccinated animals that was significantly higher than the protection achieved by any single antigen vaccine. Myosin+iPGM, in contrast did not provide any enhance protection over the single recombinant protein vaccines. Specific IgG, IgM level, IgG antibody subclasses levels (IgG1, IgG2a, IgG2b, IgG3), lymphocyte proliferation, reactive oxygen species level and cytokines level were also determined to elucidate the characteristics of the protective immune responses. Thus the study undertaken provided more insight into the cocktail vaccination approach to combat LF.
Collapse
Affiliation(s)
- Nidhi Shrivastava
- Divisions of Parasitology, Central Drug Research Institute CSIR, Jankipuram Extension BS10/1, Sector 10, Sitapur Road, Lucknow 226021, UP, India
| | | | | | | | | |
Collapse
|
8
|
Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 2013; 26:381-421. [PMID: 23824365 PMCID: PMC3719488 DOI: 10.1128/cmr.00002-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Evans
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sasha E. Larsen
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Saini V, Verma SK, Sahoo MK, Kohli DV, Murthy PK. Sufficiency of a single administration of filarial antigens adsorbed on polymeric lamellar substrate particles of poly (L-lactide) for immunization. Int J Pharm 2011; 420:101-10. [PMID: 21855618 DOI: 10.1016/j.ijpharm.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
A majority of antigens require repeated administration to ensure development of adequate humoral and cell mediated immune response. To minimize the number of administrations required, we investigated the utility of biodegradable polymeric lamellar substrate particles of poly (l-lactide) (PLSP) as adjuvant for filarial antigen preparations. PLSP was prepared and characterized and Brugia malayi adult worm extract (BmA) and its SDS-PAGE resolved 54-68 kDa fraction F6 were adsorbed on to PLSP. Swiss mice received a single injection of PLSP-F6, PLSP-BmA, FCA-F6, FCA-BmA and two doses of the plain antigens. Specific IgG, IgG1, IgG2a, IgG2b and IgE levels in serum, IFN-γ, TNF-α and nitric oxide (NO) release from cells of the immunized animals in response to antigen challenge were studied. The average size of PLSP particles was <10 μm and its % antigen adsorption efficacy was 60.4, 55.2 and 61.6 for BSA, BmA and F6, respectively. Single injection of PLSP-F6 or PLSP-BmA produced better immune responses compared to one injection of FCA-F6/BmA or two injections of plain F6 or BmA. Moreover, PLSP-F6 produced much better response than PLSP-BmA. These data demonstrate for the first time that PLSP is a superior immunoadjuvant for enhancing the immune response to filarial BmA and F6 molecules and obviates the need for multiple immunization injections.
Collapse
Affiliation(s)
- Vinay Saini
- Department of Pharmaceutical Sciences, School of Engineering and Technology, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | | | | | | | | |
Collapse
|
10
|
Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis. Vaccine 2010; 28:5038-48. [PMID: 20653106 DOI: 10.1016/j.vaccine.2010.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.
Collapse
|