1
|
Sebai E, Abidi A, Serairi R, Marzouki M, Saratsi K, Darghouth MA, Sotiraki S, Akkari H. Essential oil of Mentha pulegium induces anthelmintic effects and reduces parasite-associated oxidative stress in rodent model. Exp Parasitol 2021; 225:108105. [PMID: 33812980 DOI: 10.1016/j.exppara.2021.108105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 12/01/2022]
Abstract
Following the previous findings reported by the present authors on the anthelmintic effect of hydro-ethanolic extract of Mentha pulegium, the volatile constituents of M. pulegium are now assessed in the present study by exploring its anthelmintic and its antioxidant proprieties using in vitro and in vivo assays. Egg hatch assay (EHA) and adult worm's motility assays (AWMA) were used to assess the in vitro activity against Haemonchus. contortus. The in vivo anthelmintic potential was evaluated in mice infected with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). M. pulegium EO demonstrated 100% inhibition in the EHA at 200 μg/mL (IC50 = 56.36 μg/mL). In the AWM assay, EO achieved total worms paralysis 6 h after treatment exposure. This nematicidal effect was associated to morphological damages observed in the cuticular's worm using environmental scanning electron microscopy (ESEM). At 400 mg/kg, M. pulegium oil showed 75.66% of FECR and 80.23% of TWCR. The antioxidant potential of this plant was also monitored by several in vitro assays: total antioxidant capacity was 205.22 mg GAE/g DW, DPPH quenching effect was IC50 = 140 μg/mL, ABTS activity IC50 = 155 μg/mL and FRAP effect of 660 μg/mL. Regarding the in vivo assay, M. pulegium EO demonstrated a protective effect against oxidative stress by increasing the activity of the endogenous antioxidants (SOD, CAT and GPx) during H. polygyrus infection.
Collapse
Affiliation(s)
- Essia Sebai
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Manar II Tunis, Tunisia.
| | - Amel Abidi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Manar II Tunis, Tunisia
| | - Raja Serairi
- National School of Health Sciences of Tunis, Tunis, Tunisia; Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj- Cedria, B.P. 901, 2050, Hammam-Lif, Tunisia
| | - Moomen Marzouki
- Laboratoire des Matériaux Utiles, Pôle Technologique de Sidi Thabet Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet, Tunisia
| | - Katerina Saratsi
- Veterinary Research Institute, Hellenic Agricultural Organization-Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Mohamed Aziz Darghouth
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Smaragda Sotiraki
- Veterinary Research Institute, Hellenic Agricultural Organization-Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Hafidh Akkari
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia
| |
Collapse
|
2
|
Antiparasitic Effects of Selected Isoflavones on Flatworms. Helminthologia 2021; 58:1-16. [PMID: 33664614 PMCID: PMC7912234 DOI: 10.2478/helm-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Medicinal plants have been successfully used in the ethno medicine for a wide range of diseases since ancient times. The research on natural products has allowed the discovery of biologically relevant compounds inspired by plant secondary metabolites, what contributed to the development of many chemotherapeutic drugs. Flavonoids represent a group of therapeutically very effective plant secondary metabolites and selected molecules were shown to exert also antiparasitic activity. This work summarizes the recent knowledge generated within past three decades about potential parasitocidal activities of several flavonoids with different chemical structures, particularly on medically important flatworms such as Schistosoma spp., Fasciola spp., Echinococcus spp., Raillietina spp., and model cestode Mesocestoides vogae. Here we focus on curcumin, genistein, quercetin and silymarin complex of flavonolignans. All of them possess a whole spectrum of biological activities on eukaryotic cells which have multi-therapeutic effects in various diseases. In vitro they can induce profound alterations in the tegumental architecture and its functions as well as their activity can significantly modulate or damage worm´s metabolism directly by interaction with enzymes or signaling molecules in dose-dependent manner. Moreover, they seem to differentially regulate the RNA activity in numbers of worm´s genes. This review suggests that examined flavonoids and their derivates are promising molecules for antiparasitic drug research. Due to lack of toxicity, isoflavons could be used directly for therapy, or as adjuvant therapy for diseases caused by medically important cestodes and trematodes.
Collapse
|
3
|
Hrčková G, Kubašková TM, Reiterová K, Biedermann D. Co-administration of silymarin elevates the therapeutic effect of praziquantel through modulation of specific antibody profiles, Th1/Th2/Tregs cytokines and down-regulation of fibrogenesis in mice with Mesocestoides vogae (Cestoda) infection. Exp Parasitol 2020; 213:107888. [PMID: 32259552 DOI: 10.1016/j.exppara.2020.107888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/09/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023]
Abstract
Silymarin (SIL) represents a natural mixture of polyphenols showing an array of health benefits. The present study, carried out on a model cestode infection induced by Mesocestoides vogae tetrathyridia in the ICR strain of mice, was aimed at investigating the impact of SIL as adjunct therapy on the activity of praziquantel (PZQ) in relation to parasite burden, immunity and liver fibrosis within 20 days post-therapy. In comparison with PZQ alone, co-administration of SIL and PZQ stimulated production of total IgG antibodies to somatic and excretory-secretory antigens of metacestodes and modified the expression patterns of immunogenic molecules in both antigenic preparations. The combined therapy resulted in the elevation of IFN-γ and a decline of TNF-α and TGF-β1 in serum as compared to untreated group; however, SIL attenuated significantly the effect of PZQ on IL-4 and stimulated PZQ-suppressed phagocytosis of peritoneal macrophages. In the liver, SIL boosted the effect of PZQ on gene expression of the same cytokines in a similar way as was found in serum, except for down-regulation of PZQ-stimulated TNF-α. Compared to PZQ therapy, the infiltration of mast cells into liver after SIL co-administration was nearly abolished and correlated with suppressed activities of genes for collagen I, collagen III and α-SMA. In conclusion, co-administration of SIL modified the effects of PZQ therapy on antigenic stimulation of the immune system and modulated Th1/Th2/Tregs cytokines. In liver this was accompanied by reduced fibrosis, which correlated with significantly higher reduction of total numbers of tetrathyridia after combined therapy as compared with PZQ treatment.
Collapse
Affiliation(s)
- Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic.
| | - Terézia Mačák Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic
| | - Katarína Reiterová
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220, Prague, Czech Republic
| |
Collapse
|
4
|
Differential Sensitivity of Myeloid and Lymphoid Cell Populations to Apoptosis in Peritoneal Cavity of Mice with Model Larval Mesocestoides Vogae Infection. Helminthologia 2019; 56:183-195. [PMID: 31662690 PMCID: PMC6799576 DOI: 10.2478/helm-2019-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022] Open
Abstract
The metacestode stage of the tapeworm Mesocestoides vogae (M. vogae) has the ability of asexual growth in the peritoneal cavity of rodents and other intermediate hosts without restriction. Early immunological events have decisive role in the establishment of infection. In the present study we investigated the kinetic of myeloid and lymphoid cell populations and the proportions of cells undergoing apoptosis in peritoneal cavities of mice within the first month after oral infection with M. vogae larvae. Proportions of cell phenotypes and apoptotic cells were examined by flow cytometry and by microscopical analysis of cells following May/Grünwald staining and fluorescent stain Hoechst 33234, respectively. Total numbers of peritoneal cells increased and their distribution changed towards accumulation of myelo-monocytic cell lineage in the account of reduced proportions of lymphoid cells. CD4+ T cell subpopulations were more abundant than CD8+ and their proportions elevated within two weeks post infection (p.i.) which was followed by a significant decline. Expression level of CD11c marker on myelo-monocytic cells revealed phenotype heterogeneity and proportions of cells with low and medium expression elevated from day 14 p.i. along with concurrent very low presence of CD11chigh phenotype. Lymphoid cell population was highly resistant to apoptosis but elevated proportions of myeloid cells were in early/late stage of apoptosis. Apoptosis was detected in a higher number of adherent cells from day 14 p.i. onwards as evidenced by nuclear fluorescent staining. By contrast, cells adherent to larvae, mostly macrophages and eosinophils, did not have fragmented nuclei. Our data demonstrated that apoptosis did not account for diminished population of peritoneal lymphoid cells and substantial proportions of myeloid cells seem to be more susceptible to apoptotic turnover in peritoneal cavity of mice with ongoing M. vogae infection, suggesting their important role in the host-parasite interactions.
Collapse
|
5
|
Hrčková G, Kubašková TM, Benada O, Kofroňová O, Tumová L, Biedermann D. Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions. Molecules 2018; 23:molecules23112999. [PMID: 30453549 PMCID: PMC6278466 DOI: 10.3390/molecules23112999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/01/2023] Open
Abstract
Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans—silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)—on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.
Collapse
Affiliation(s)
- Gabriela Hrčková
- Department of Experimental Pharmacology, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK 040 01 Košice, Slovakia.
| | - Terézia Mačák Kubašková
- Department of Experimental Pharmacology, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK 040 01 Košice, Slovakia.
| | - Oldřich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Olga Kofroňová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Lenka Tumová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ 501 65 Hradec Králové, Czech Republic.
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Mačák Kubašková T, Mudroňová D, Velebný S, Hrčková G. The utilisation of human dialyzable leukocyte extract (IMMODIN) as adjuvant in albendazole therapy on mouse model of larval cestode infection: Immunomodulatory and hepatoprotective effects. Int Immunopharmacol 2018; 65:148-158. [PMID: 30316073 DOI: 10.1016/j.intimp.2018.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Metacestode (larval) stages of zoonotic cestodes of medical and veterinary importance cause chronic infections associated with immunosuppression. During mouse model of cestode infection induced by larvae of Mesocestoides (M.) vogae, we investigated the effects of dialyzable leukocyte extract (DLE) containing low-molecular weight substances (under 10 kDa) prepared from peripheral blood leukocytes of healthy human donors (available under commercial name IMMODIN). In the experiment, the effects of DLE as adjuvant to anthelmintic albendazole (ABZ) as well ABZ mono-therapy were also investigated. We showed that DLE enhanced therapeutic effect of ABZ by significant reduction of parasites number in both biased sites. Furthermore, administration of DLE reduced fibrosis and concentrations of lipid peroxides in the liver and thereby showed cytoprotective effect. In contrast, higher hydroxyproline level and numbers of larvae enclosed in fibrous capsules were found in ABZ-treated group. In order to investigate whether DLE could affect parasite-induced immunosuppression, we evaluated selected immune parameters. The results showed that DLE administration to mice increased proliferation of concanavalin A stimulated splenic cells ex vivo. Similarly, in vitro study confirmed that DLE ameliorated hypo-responsiveness of T lymphocytes and partially reverted suppressive effect of parasites excretory-secretory products. In addition, flow cytometric analysis revealed higher numbers of T helper and NK cells in the spleen and peritoneal cavity of infected mice after DLE + ABZ therapy. We also found strongly reduced serum levels of TGF-β1 and IL-17 as well as modulation of cytokines associated with Th1/Th2 immunity. These results suggest that IMMODIN could serve as a suitable adjuvant to the primary anthelmintic therapy.
Collapse
Affiliation(s)
- Terézia Mačák Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Dagmar Mudroňová
- The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovak Republic
| | - Samuel Velebný
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic; IMUNA PHARM, a.s., Jarková 269/17, Šarišské Michaľany, Slovak Republic.
| |
Collapse
|
7
|
Arion A, Fernández-Varón E, Cárceles CM, Gagyi L, Ognean L. Pharmacokinetics of praziquantel and pyrantel pamoate combination following oral administration in cats. J Feline Med Surg 2018; 20:900-904. [PMID: 29017390 PMCID: PMC11129249 DOI: 10.1177/1098612x17734065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Objectives The pharmacokinetics of praziquantel and pyrantel pamoate has never been reported in cats. The present study was designed to establish the plasma concentration-time profile and to derive pharmacokinetic data for a combined formulation of praziquantel and pyrantel in cats, after a single, oral administration. Methods Twenty-two clinically healthy adult cats were used, each receiving a single oral dose of praziquantel (8.5 mg/kg) and pyrantel (100 mg/kg). Blood samples were collected at regular time points up to 48 h post-dosing. Plasma concentrations of praziquantel and pyrantel were measured using a liquid chromatography-mass spectrometry-high-throughput screening method. Results Clinical examination of all cats did not reveal any side effects after oral administration of these medications. The terminal half-life for praziquantel and pyrantel was 1.07 and 1.36 h, respectively. Praziquantel peak concentration (Cmax) was 1140 μg/ml, reached at 1.22 h. The plasma concentrations of pyrantel after oral administration were low with a mean Cmax of 0.11 μg/ml, reached at a Tmax of 1.91 h. Pyrantel showed a very limited absorption as pamoate salt, suggesting permanence and efficacy inside the gastrointestinal tract, where the adult stages of most parasitic nematodes reside. Conclusions and relevance Pyrantel showed a very limited absorption as pamoate salt. Praziquantel was rapidly absorbed following oral administration and the concentrations achieved suggest that praziquantel could be an effective and safe medication in cats. Although some resistance problems are arising as a result of their long use, these anthelminthic products can still play a major role in parasitic control, especially in geographical areas where the high cost of newer treatments or necessity of parenteral administration could decrease the number of treated animals.
Collapse
Affiliation(s)
- Alexandra Arion
- Department of Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur, Cluj-Napoca, Romania
| | - Emilio Fernández-Varón
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Carlos M Cárceles
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, Murcia, Spain
| | | | - Laurent Ognean
- Department of Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Hrčková G, Vendelova E, Velebný S. Phagocytosis in Mesocestoides vogae-induced peritoneal monocytes/macrophages via opsonin-dependent or independent pathways. Helminthologia 2016. [DOI: 10.1515/helmin-2015-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Summary
Intraperitoneal infection with larvae of cestode Mesocestoides vogae offers the opportunity to study dynamic changes in the proportion and functions of individual cell types under a direct influence of parasites. The phagocytic activity is one of the basic effector functions of professional phagocytes and receptor-mediated uptake is a central in implementation of inflammatory responses. Present study extends information on this issue by exploring several phagocytosis pathways in M. vogae-induced myelo-monocytic cells. In addition, we analyzed proportions of morphologically distinct phenotypes within macrophage compartments after oral inoculation of larvae to mice. In gradually elevated population of peritoneal exudate cells, monocytes/ macrophages and giant cell were dominant cell types from day 21 p.i. Phagocytic activity of these cells had biphasic behaviour for both opsonin-dependent and independent pathways, whereas uptake by multinucleated macrophages was profoundly reduced. Highly elevated proportions of activated phagocytic cells were found from day 7 to 14 p.i., regardless particle type (latex beads, HEMA, liposomes) and opsonisation. Source of opsonins used for coating of liposomes suggested higher expression of complement receptors than Fc receptors on these cells, although the uptake of non-opsonized liposomes had different kinetics and was very high by activated cells early p.i. Present data indicate that early recruited macrophages/monocytes attain pro-inflammatory functions as indicated by highly elevated phagocytosis of immunologically inert particles as well as opsonized liposomes what is down-regulated once larvae start to proliferate in the peritoneal cavity, suggesting the role of parasite-derived molecules in modulation of this key phagocytes function.
Collapse
Affiliation(s)
- G. Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - E. Vendelova
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - S. Velebný
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| |
Collapse
|
9
|
Zheng D, Wang Y, Zhang D, Liu Z, Duan C, Jia L, Wang F, Liu Y, Liu G, Hao L, Zhang Q. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett 2011; 307:158-64. [DOI: 10.1016/j.canlet.2011.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/29/2022]
|