1
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Tian EJ. Diclazuril-induced expression of CDK-related kinase 2 in the second-generation merozoites of Eimeria tenella. Mol Biochem Parasitol 2023; 255:111575. [PMID: 37302489 DOI: 10.1016/j.molbiopara.2023.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Diclazuril is a classic anticoccidial drug. The key molecules of diclazuril in anticoccidial action allows target screening for the development of anticoccidial drugs. Cyclin-dependent kinases (CDK) are prominent target proteins in apicomplexan parasites. In this study, a diclazuril anticoccidiosis animal model was established, and the transcription and translation levels of the CDK-related kinase 2 of Eimeria tenella (EtCRK2) were detected. mRNA and protein expression levels of EtCRK2 decreased in the infected/diclazuril group compared with those in the infected/control group. In addition, immunofluorescence analysis showed that EtCRK2 was localised in the cytoplasm of the merozoites. The fluorescence intensity of EtCRK2 in the infected/diclazuril group was significantly weaker than that in the infected/control group. The anticoccidial drug diclazuril against E.tenella affects the expression pattern of EtCRK2 molecule, and EtCRK2 is a potential target for new drug development.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jun Chai
- School of information technology and urban construction, Luoyang Vocational and Technical College, Keji Avenue 6, Yibin District, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Longzi Hubei Road 6, Zhengzhou 450046, Henan, People's Republic of China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| |
Collapse
|
2
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
3
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
4
|
Jankowska-Döllken M, Sanchez CP, Cyrklaff M, Lanzer M. Overexpression of the HECT ubiquitin ligase PfUT prolongs the intraerythrocytic cycle and reduces invasion efficiency of Plasmodium falciparum. Sci Rep 2019; 9:18333. [PMID: 31797898 PMCID: PMC6893019 DOI: 10.1038/s41598-019-54854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The glms ribozyme system has been used as an amenable tool to conditionally control expression of genes of interest. It is generally assumed that insertion of the ribozyme sequence does not affect expression of the targeted gene in the absence of the inducer glucosamine-6-phosphate, although experimental support for this assumption is scarce. Here, we report the unexpected finding that integration of the glms ribozyme sequence in the 3′ untranslated region of a gene encoding a HECT E3 ubiquitin ligase, termed Plasmodium falciparum ubiquitin transferase (PfUT), increased steady state RNA and protein levels 2.5-fold in the human malaria parasite P. falciparum. Overexpression of pfut resulted in an S/M phase-associated lengthening of the parasite’s intraerythrocytic developmental cycle and a reduced merozoite invasion efficiency. The addition of glucosamine partially restored the wild type phenotype. Our study suggests a role of PfUT in controlling cell cycle progression and merozoite invasion. Our study further raises awareness regarding unexpected effects on gene expression when inserting the glms ribozyme sequence into a gene locus.
Collapse
Affiliation(s)
- Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Matthews H, Duffy CW, Merrick CJ. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit Vectors 2018; 11:216. [PMID: 29587837 PMCID: PMC5872521 DOI: 10.1186/s13071-018-2800-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Craig W Duffy
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK.
| |
Collapse
|
6
|
Murungi EK, Kariithi HM. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases. Pathogens 2017; 6:pathogens6010012. [PMID: 28335576 PMCID: PMC5371900 DOI: 10.3390/pathogens6010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.
Collapse
Affiliation(s)
- Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115 Njoro, Kenya.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Kaptagat Rd, Loresho, 00200 Nairobi, Kenya.
| |
Collapse
|
7
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
8
|
Liu X, Huang Y, Liang J, Wang J, Shen Y, Li Y, Zhao Y. Characterization of the malaria parasite protein PfTip, a novel invasion-related protein. Mol Med Rep 2016; 13:3303-10. [PMID: 26935027 DOI: 10.3892/mmr.2016.4910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/26/2016] [Indexed: 11/06/2022] Open
Abstract
Malaria is one of the most common infective diseases in the world. Invasion of host erythrocytes by the malaria parasite is crucial for pathogen survival and pathogenesis. Various proteins mediate parasite invasion and identification of novel invasion-related proteins may aid in elucidating the underlying molecular mechanism and new intervention strategies for malaria control. This study characterized the PfTip protein, a homolog of the human T‑cell immunomodulatory protein, and examined its function in preventing parasite infection. Bioinformatics analysis and experimental validation were adopted in the present study. Bioinformatics analysis showed that PfTip has a β‑propeller fold in its structure and is highly expressed at the early ring stage. TNFRSF14 was predicted to be a candidate interactant of PfTip. Further analyses showed that PfTip blockage by sera inhibited erythrocyte invasion by the malaria parasite. The protective effect of PfTip was further confirmed through in vivo analysis. To the best of our knowledge, this study is the first to provide evidence on the function of PfTip in erythrocyte parasite invasion. Additional assays involving the receptor of this protein are currently underway.
Collapse
Affiliation(s)
- Xuewu Liu
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuxiao Huang
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiao Liang
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Wang
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Shen
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yinghui Li
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ya Zhao
- Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Siwo GH, Smith RS, Tan A, Button-Simons KA, Checkley LA, Ferdig MT. An integrative analysis of small molecule transcriptional responses in the human malaria parasite Plasmodium falciparum. BMC Genomics 2015; 16:1030. [PMID: 26637195 PMCID: PMC4670519 DOI: 10.1186/s12864-015-2165-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/29/2015] [Indexed: 12/05/2022] Open
Abstract
Background Transcriptional responses to small molecules can provide insights into drug mode of action (MOA). The capacity of the human malaria parasite, Plasmodium falciparum, to respond specifically to transcriptional perturbations has been unclear based on past approaches. Here, we present the most extensive profiling to date of the parasite’s transcriptional responsiveness to thirty-one chemically and functionally diverse small molecules. Methods We exposed two laboratory strains of the human malaria parasite P. falciparum to brief treatments of thirty-one chemically and functionally diverse small molecules associated with biological effects across multiple pathways based on various levels of evidence. We investigated the impact of chemical composition and MOA on gene expression similarities that arise between perturbations by various compounds. To determine the target biological pathways for each small molecule, we developed a novel framework for encoding small molecule effects on a spectra of biological processes or GO functions that are enriched in the differentially expressed genes of a given small molecule perturbation. Results We find that small molecules associated with similar transcriptional responses contain similar chemical features, and/ or have a shared MOA. The approach also revealed complex relationships between drugs and biological pathways that are missed by most exisiting approaches. For example, the approach was able to partition small molecule responses into drug-specific effects versus non-specific effects. Conclusions Our work provides a new framework for linking transcriptional responses to drug MOA in P. falciparum and can be generalized for the same purpose in other organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2165-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geoffrey H Siwo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: IBM TJ Watson Research Center, Yorktown Heights, NY, 10598, USA.,Current Address: IBM Research-Africa, South Africa Lab, Sandton, Johannesburg, 2196, South Africa
| | - Roger S Smith
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Asako Tan
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Epicenter, Madison, WI, 53719, USA
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
10
|
Desgrouas C, Chapus C, Desplans J, Travaille C, Pascual A, Baghdikian B, Ollivier E, Parzy D, Taudon N. In vitro antiplasmodial activity of cepharanthine. Malar J 2014; 13:327. [PMID: 25145413 PMCID: PMC4152577 DOI: 10.1186/1475-2875-13-327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND New classes of anti-malarial drugs are needed to control the alarming Plasmodium falciparum resistance toward current anti-malarial therapy. The ethnopharmacological approach allows the discovery of original chemical structures from the vegetable biodiversity. Previous studies led to the selection of a bisbenzylisoquinoline, called cepharanthine and isolated from a Cambodian plant: Stephania rotunda. Cepharanthine could exert a mechanism of action different from commonly used drugs. Potential plasmodial targets are reported here. METHODS To study the mechanism of action of cepharanthine, a combined approach using phenotypic and transcriptomic techniques was undertaken. RESULTS Cepharanthine blocked P. falciparum development in ring stage. On a culture of synchronized ring stage, the comparisons of expression profiles showed that the samples treated with 5 μM of cepharanthine (IC90) were significantly closer to the initial controls than to the final ones. After a two-way ANOVA (p-value < 0.05) on the microarray results, 1,141 probes among 9,722 presented a significant differential expression.A gene ontology analysis showed that the Maurer's clefts seem particularly down-regulated by cepharanthine. The analysis of metabolic pathways showed an impact on cell-cell interactions (cytoadherence and rosetting), glycolysis and isoprenoid pathways. Organellar functions, more particularly constituted by apicoplast and mitochondrion, are targeted too. CONCLUSION The blockage at the ring stage by cepharanthine is described for the first time. Transcriptomic approach confirmed that cepharanthine might have a potential innovative antiplasmodial mechanism of action. Thus, cepharanthine might play an ongoing role in the progress on anti-malarial drug discovery efforts.
Collapse
Affiliation(s)
- Camille Desgrouas
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Charles Chapus
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| | - Jérôme Desplans
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Christelle Travaille
- />Trypanosome Cell Biology Unit, CNRS URA2581 and Parasitology Department, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Aurélie Pascual
- />Département d’Infectiologie de Terrain, Unité de Parasitologie, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Béatrice Baghdikian
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Evelyne Ollivier
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Daniel Parzy
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Nicolas Taudon
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| |
Collapse
|