1
|
Andrew AK, Cooper CA, Moore JM. A novel murine model of post-implantation malaria-induced preterm birth. PLoS One 2022; 17:e0256060. [PMID: 35312688 PMCID: PMC8936457 DOI: 10.1371/journal.pone.0256060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Despite major advances made in malaria treatment and control over recent decades, the development of new models for studying disease pathogenesis remains a vital part of malaria research efforts. The study of malaria infection during pregnancy is particularly reliant on mouse models, as a means of circumventing many challenges and costs associated with pregnancy studies in endemic human populations. Here, we introduce a novel murine model that will further our understanding of how malaria infection affects pregnancy outcome. When C57BL/6J (B6) mice are infected with Plasmodium chabaudi chabaudi AS on either embryonic day (E) 6.5, 8.5, or 10.5, preterm birth occurs in all animals by E16.5, E17.5, or E18.5 respectively, with no evidence of intrauterine growth restriction. Despite having the same outcome, we found that the time to delivery, placental inflammatory and antioxidant transcript upregulation, and the relationships between parasitemia and transcript expression prior to preterm birth differed based on the embryonic day of infection. On the day before preterm delivery, E6.5 infected mice did not experience significant upregulation of the inflammatory or antioxidant gene transcripts examined; however, peripheral and placental parasitemia correlated positively with Il1β, Cox1, Cat, and Hmox1 placental transcript abundance. E8.5 infected mice had elevated transcripts for Ifnγ, Tnf, Il10, Cox1, Cox2, Sod1, Sod2, Cat, and Nrf2, while Sod3 was the only transcript that correlated with parasitemia. Finally, E10.5 infected mice had elevated transcripts for Ifnγ only, with a tendency for Tnf transcripts to correlate with peripheral parasitemia. Tumor necrosis factor deficient (TNF-/-) and TNF receptor 1 deficient (TNFR1-/-) mice infected on E8.5 experienced preterm birth at the same time as B6 controls. Further characterization of this model is necessary to discover the mechanism(s) and/or trigger(s) responsible for malaria-driven preterm birth caused by maternal infection during early pregnancy.
Collapse
Affiliation(s)
- Alicer K. Andrew
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Caitlin A. Cooper
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Boareto AC, Gomes C, Centeno Müller J, da Silva JG, Vergara F, Salum N, Maristany Sargaço R, de Carvalho RR, Queiroz Telles JE, Marinho CRF, Paumgartten FJR, Dalsenter PR. Maternal and fetal outcome of pregnancy in Swiss mice infected with Plasmodium berghei ANKA GFP. Reprod Toxicol 2019; 89:107-114. [PMID: 31310803 DOI: 10.1016/j.reprotox.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
Malaria in pregnant women is associated with risk of maternal and perinatal morbidity and mortality, and there are few antimalarial drugs considered safe to treat them, so it is necessary to develop safer antimalarial medicines. The goal of this study was to develop an animal model for human malaria during pregnancy by characterizing the maternal and fetal outcomes in malaria infected Swiss mice. For that, in the present study, we evaluated the outcome of pregnancy in Swiss mice infected with Plasmodium berghei ANKAGFP. We observed a reduction of fetal body weight and signs of skeletal ossification retardation in the offspring of mice infected on GD 12. The group of mice infected with malaria presented premature deliveries and histopathology changes consistent with placental malaria. Our study suggests that Swiss Webster mice infected with P. berghei ANKAGFP on GD 12 might be a valuable model to investigate the safety and the efficacy of new antimalarial drugs indicated to pregnant women.
Collapse
Affiliation(s)
- Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil.
| | - Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Juliane Centeno Müller
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Jonas Golart da Silva
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil; Department of Chemistry and Biology, Federal University of Technology - Paraná, Cidade Industrial, Curitiba, PR, 81020-430, Brazil
| | - Fernanda Vergara
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Noruê Salum
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Rafaela Maristany Sargaço
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Rosângela Ribeiro de Carvalho
- Laboratory of Environmental Toxicology, National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | | | - Cláudio Romero Farias Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo, SP, 03178-200, Brazil
| | - Francisco José Roma Paumgartten
- Laboratory of Environmental Toxicology, National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Paulo Roberto Dalsenter
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
3
|
Barateiro A, Pereira MLM, Epiphanio S, Marinho CRF. Contribution of Murine Models to the Study of Malaria During Pregnancy. Front Microbiol 2019; 10:1369. [PMID: 31275284 PMCID: PMC6594417 DOI: 10.3389/fmicb.2019.01369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.
Collapse
Affiliation(s)
- André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo L M Pereira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute of Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sabrina Epiphanio
- Department of Clinical Analysis and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Pandya Y, Penha-Gonçalves C. Maternal-Fetal Conflict During Infection: Lessons From a Mouse Model of Placental Malaria. Front Microbiol 2019; 10:1126. [PMID: 31178840 PMCID: PMC6542978 DOI: 10.3389/fmicb.2019.01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Infections that reach the placenta via maternal blood can target the fetal-placental barrier and are associated with reduced birth weight, increased stillbirth, miscarriage and perinatal mortality. Malaria during pregnancy can lead to infection of the placental tissue and to adverse effects on the unborn child even if the parasite is successfully cleared, indicating that placental sufficiency is significantly compromised. Human samples and animal models of placental malaria have been used to unravel mechanisms contributing to this insufficiency and have implicated molecular pathways related to inflammation, innate immunity and nutrient transport. Remarkably, fetal TLR4 was found to take part in placental responses that protect the fetus, in contrast to maternal TLR4 responses that presumably preserve the mother‘s health but result in reduced fetal viability. We propose that this conflict of fetal and maternal responses is a determinant of the clinical outcomes of placental malaria and that fetally derived trophoblasts are on the front lines of this conflict.
Collapse
Affiliation(s)
- Yash Pandya
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
5
|
Sharma L, Shukla G. Placental Malaria: A New Insight into the Pathophysiology. Front Med (Lausanne) 2017; 4:117. [PMID: 28791290 PMCID: PMC5524764 DOI: 10.3389/fmed.2017.00117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Malaria in pregnancy poses a great health risk to mother and her fetus and results into complications, such as abortion, still birth, intra uterine growth retardation, and low birth weight. The heavy infiltration of Plasmodium falciparum-infected RBCs in the intervillous spaces of placenta seems to be responsible for all the complications observed. Infected RBCs in the placenta cause an inflammatory environment with increase in inflammatory cells and cytokines which is deleterious to the placenta. Increased inflammatory responses in the infected placenta result into oxidative stress that in turn causes oxidative stress-induced placental cell death. Moreover, heat shock proteins that are produced in high concentration in stressed cells to combat the stress have been reported in fewer concentrations in malaria-infected placenta. Pathologies associated with placental malaria seems to be the effect of a change in immune status from antibody-mediated immune response to cell-mediated immune response resulting into excess inflammation, oxidative stress, apoptosis, and decreased heat shock protein expression. However, we also need to study other aspects of pathologies so that better drugs can be designed with new molecular targets.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Sarr D, Cooper CA, Bracken TC, Martinez-Uribe O, Nagy T, Moore JM. Oxidative Stress: A Potential Therapeutic Target in Placental Malaria. Immunohorizons 2017; 1:29-41. [PMID: 28890952 DOI: 10.4049/immunohorizons.1700002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Placental malaria, characterized by sequestration of Plasmodium falciparum in the maternal placental blood space and associated inflammatory damage, contributes to poor birth outcomes and ~200,000 infant deaths annually. Specific mechanisms that contribute to placental damage and dysfunction during malaria are not completely understood. To investigate a potential role for oxidative stress, antioxidant genes and markers for oxidative damage were assessed by quantitative PCR and immunohistochemistry in Plasmodium chabaudi AS-infected pregnant mice. Widespread evidence of lipid peroxidation was observed and was associated with higher antioxidant gene expression in conceptuses of infected mice. To assess the extent to which this oxidative damage might contribute to poor birth outcomes and be amenable to therapeutic intervention, infected pregnant mice were treated with N-acetylcysteine, a free radical scavenger, or tempol, an intracellular superoxide dismutase mimetic. The results show that mice treated with N-acetylcysteine experienced malaria induced-pregnancy loss at the same rate as control animals and failed to mitigate placental oxidative damage. In contrast, tempol-treated mice exhibited subtle improvement in embryo survival at gestation day 12. Although lipid peroxidation was not consistently reduced in the placentas of these mice, it was inversely related to embryo viability. Moreover, reduced IFN-γ and CCL2 plasma levels in treated mice were associated with midgestational embryo viability. Thus, although oxidative stress is remarkable in placental malaria and its mitigation by antioxidant therapy may improve pregnancy outcomes, the underlying mechanistic basis and potential therapeutic strategies require additional investigation.
Collapse
Affiliation(s)
- Demba Sarr
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tara C Bracken
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Omar Martinez-Uribe
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Julie M Moore
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
7
|
Mady RF, El-Hadidy W, Elachy S. Effect of Nigella sativa oil on experimental toxoplasmosis. Parasitol Res 2015; 115:379-90. [DOI: 10.1007/s00436-015-4759-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
|