1
|
Sabbahi R, Hock V, Azzaoui K, Hammouti B. Leishmania-sand fly interactions: exploring the role of the immune response and potential strategies for Leishmaniasis control. J Parasit Dis 2024; 48:655-670. [PMID: 39493480 PMCID: PMC11528092 DOI: 10.1007/s12639-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 11/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, affecting millions of people worldwide. The disease is transmitted by the bite of infected female sand flies, which act as vectors and hosts for the parasites. The interaction between Leishmania parasites and sand flies is complex and dynamic, involving various factors that influence parasite development, survival and transmission. This review examines how the immune response of sand flies affects vector competence and transmission of Leishmania parasites, and what the potential strategies are to prevent or reduce infection. The review also summarizes the main findings and conclusions of the existing literature and discusses implications and recommendations for future research and practice. The study reveals that the immune response of sand flies is a key determinant of vector competence and transmission of Leishmania parasites, and that several molecular and cellular mechanisms are involved in the interaction between parasite and vector. The study also suggests that there are potential strategies for controlling leishmaniasis, such as interfering with parasite development, modulating the vector's immune response or reducing the vector population. However, the study also identifies several gaps and limitations in current knowledge and calls for more comprehensive and systematic studies on vector-parasite interaction and its impact on leishmaniasis transmission and control.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, 70000 Laayoune, Morocco
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
| | - Virginia Hock
- Department of Biology, Dawson College, 3040 Sherbrooke St. W, Montreal, QC H3Z 1A4 Canada
| | - Khalil Azzaoui
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco
| | | |
Collapse
|
2
|
Vomáčková Kykalová B, Sassù F, Dutra-Rêgo F, Soares RP, Volf P, Loza Telleria E. Pathogen-associated molecular patterns (PAMPs) derived from Leishmania and bacteria increase gene expression of antimicrobial peptides and gut surface proteins in sand flies. Int J Parasitol 2024; 54:485-495. [PMID: 38626865 DOI: 10.1016/j.ijpara.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/30/2024]
Abstract
The interaction between pathogens and vectors' physiology can impact parasite transmission. Studying this interaction at the molecular level can help in developing control strategies. We study leishmaniases, diseases caused by Leishmania parasites transmitted by sand fly vectors, posing a significant global public health concern. Lipophosphoglycan (LPG), the major surface glycoconjugate of Leishmania, has been described to have several roles throughout the parasite's life cycle, both in the insect and vertebrate hosts. In addition, the sand fly midgut possesses a rich microbiota expressing lipopolysaccharides (LPS). However, the effect of LPG and LPS on the gene expression of sand fly midgut proteins or immunity effectors has not yet been documented. We experimentally fed Lutzomyia longipalpis and Phlebotomus papatasi sand flies with blood containing purified LPG from Leishmania infantum, Leishmania major, or LPS from Escherichia coli. The effect on the expression of genes encoding gut proteins galectin and mucin, digestive enzymes trypsin and chymotrypsin, and antimicrobial peptides (AMPs) attacin and defensins was assessed by quantitative PCR (qPCR). The gene expression of a mucin-like protein in L. longipalpis was increased by L. infantum LPG and E. coli LPS. The gene expression of a galectin was increased in L. longipalpis by L. major LPG, and in P. papatasi by E. coli LPS. Nevertheless, the gene expression of trypsins and chymotrypsins did not significantly change. On the other hand, both L. infantum and L. major LPG significantly enhanced expression of the AMP attacin in both sand fly species and defensin in L. longipalpis. In addition, E. coli LPS increased the expression of attacin and defensin in L. longipalpis. Our study showed that Leishmania LPG and E. coli LPS differentially modulate the expression of sand fly genes involved in gut maintenance and defence. This suggests that the glycoconjugates from microbiota or Leishmania may increase the vector's immune response and the gene expression of a gut coating protein in a permissive vector.
Collapse
Affiliation(s)
- Barbora Vomáčková Kykalová
- Charles University, Faculty of Science, Department of Parasitology, Viničná 7, 128 44, Prague, Czech Republic
| | - Fabiana Sassù
- Charles University, Faculty of Science, Department of Parasitology, Viničná 7, 128 44, Prague, Czech Republic
| | - Felipe Dutra-Rêgo
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Av. Augusto de Lima, 1715, CEP: 30190-009, Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Av. Augusto de Lima, 1715, CEP: 30190-009, Belo Horizonte, MG, Brazil
| | - Petr Volf
- Charles University, Faculty of Science, Department of Parasitology, Viničná 7, 128 44, Prague, Czech Republic
| | - Erich Loza Telleria
- Charles University, Faculty of Science, Department of Parasitology, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
3
|
Silveira KRD, Nogueira PM, Soares RP. Effect of hybridization on Lipophosphoglycan expression in Leishmania major. Cell Biol Int 2022; 46:1169-1174. [PMID: 35312138 DOI: 10.1002/cbin.11798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Abstract
Leishmania major is the causative agent of cutaneous leishmaniasis (CL). It is one of the most studied Leishmania species not only during vector interaction, but also in the vertebrate host. Lipophosphoglycan (LPG) is the Leishmania multifunctional virulence factor during host-parasite interaction, whose polymorphisms are involved in the immunopathology of leishmaniasis. Although natural hybrids occur in nature, hybridization of L. major strains in the laboratory was successfully demonstrated. However, LPG expression in the hybrids remains unknown. LPGs from parental (Friedlin-Fn and Seidman-Sd) and hybrids (FnSd3, FnSd4A, FnSd4B and FnSd6F) were extracted, purified and their repeat units analyzed by immunoblotting and fluorophore-assisted carbohydrate electrophoresis (FACE). Parental strains have distinct profiles in LPG expression, and a mixed profile was observed for all hybrids. Variable levels of NO production by macrophages were detected after LPG exposure (parental and hybrids) and were strain specific. This article is protected by copyright. All rights reserved.
Collapse
|
4
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
6
|
Hall AR, Blakeman JT, Eissa AM, Chapman P, Morales-García AL, Stennett L, Martin O, Giraud E, Dockrell DH, Cameron NR, Wiese M, Yakob L, Rogers ME, Geoghegan M. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chem Sci 2020. [DOI: 10.1039/d0sc03298k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Force spectroscopy was used to measure the adhesion of Leishmania to synthetic mimics of galectins on the sand fly midgut.
Collapse
|
7
|
Guimarães AC, Nogueira PM, Silva SDO, Sadlova J, Pruzinova K, Hlavacova J, Melo MN, Soares RP. Lower galactosylation levels of the Lipophosphoglycan from Leishmania (Leishmania) major-like strains affect interaction with Phlebotomus papatasi and Lutzomyia longipalpis. Mem Inst Oswaldo Cruz 2018. [PMID: 29513819 PMCID: PMC5853761 DOI: 10.1590/0074-02760170333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.
Collapse
Affiliation(s)
- Agna Cristina Guimarães
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Pruzinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Hlavacova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria Norma Melo
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo Pedro Soares
- Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, MG, Brasil
| |
Collapse
|
8
|
Butenko A, Vieira TDS, Frolov AO, Opperdoes FR, Soares RP, Kostygov AY, Lukeš J, Yurchenko V. Leptomonas pyrrhocoris: Genomic insight into Parasite's Physiology. Curr Genomics 2018; 19:150-156. [PMID: 29491743 PMCID: PMC5814963 DOI: 10.2174/1389202918666170815143331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/20/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leptomonas pyrrhocoris is a parasite of the firebug Pyrrhocoris apterus. This flagellate has been recently proposed as a model species for studying different aspects of the biology of monoxenous trypanosomatids, including host - parasite interactions. During its life cycle L. pyrrhocoris never tightly attaches to the epithelium of the insect gut. In contrast, its dixenous relatives (Leishmania spp.) establish a stable infection via attachment to the intestinal walls of their insect hosts. MATERIAL AND METHODS This process is mediated by chemical modifications of the cell surface lipophosphoglycans. In our study we tested whether the inability of L. pyrrhocoris to attach to the firebug's midgut is associated with the absence of these glycoconjugates. We also analyzed evolution of the proteins involved in proper lipophosphoglycan assembly, cell attachment and establishment of a stable infection in L. pyrrhocoris, L. seymouri, and Leishmania spp. Our comparative analysis demonstrated differences in SCG/L/R repertoire between the two parasite subgenera, Leishmania and Viannia, which may be related to distinct life strategies in various Leishmania spp. The genome of L. pyrrhocoris encodes 6 SCG genes, all of which are quite divergent from their orthologs in the genus Leishmania. Using direct probing with an antibody recognizing the β-Gal side chains of lipophosphoglycans, we confirmed that these structures are not synthesized in L. pyrrhocoris. CONCLUSION We conclude that either the SCG enzymes are not active in this species (similarly to SCG5/7 in L. major), or they possess a different biochemical activity.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budejovice (Budweis), Czech Republic
| | - Tamara da Silva Vieira
- Centro de Pesquisas Rene Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg199034, Russia
| | - Fred R. Opperdoes
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Rodrigo P. Soares
- Centro de Pesquisas Rene Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Alexei Yu. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg199034, Russia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budejovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, ONM5G1Z8, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budejovice (Budweis), Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Pruzinova K, Sadlova J, Myskova J, Lestinova T, Janda J, Volf P. Leishmania mortality in sand fly blood meal is not species-specific and does not result from direct effect of proteinases. Parasit Vectors 2018; 11:37. [PMID: 29335002 PMCID: PMC5769529 DOI: 10.1186/s13071-018-2613-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/02/2018] [Indexed: 01/30/2023] Open
Abstract
Background Leishmania development in sand flies is confined to the alimentary tract and is closely connected with blood meal digestion. Previously, it has been published that activities of sand fly midgut proteases are harmful to Leishmania, especially to amastigote-promastigote transition forms. However, our experiments with various Leishmania-sand fly pairs gave quite opposite results. Methods We evaluated the effect of semi-digested midgut content on different life stages of Leishmania donovani and Leishmania majorin vitro. Various morphological forms of parasites, including macrophage-derived amastigotes and transition forms, were incubated 2 h with midguts dissected at various intervals (6–72 h) post-blood meal or with commercially available proteinase, and their viability was determined using flow cytometry. In parallel, using amastigote-initiated experimental infections, we compared development of L. donovani in sand flies that are either susceptible (Phlebotomus argentipes and P. orientalis) or refractory (P. papatasi and Sergentomyia schwetzi) to this parasite. Results In vitro, sand fly midgut homogenates affected L. major and L. donovani in a similar way; in all sand fly species, the most significant mortality effect was observed by the end of the blood meal digestion process. Surprisingly, the most susceptible Leishmania stages were promastigotes, while mortality of transforming parasites and amastigotes was significantly lower. Parasites were also susceptible to killing by rabbit blood in combination with proteinase, but resistant to proteinase itself. In vivo, L. donovani developed late-stage infections in both natural vectors; in P. argentipes the development was much faster than in P. orientalis. On the other hand, in refractory species P. papatasi and S. schwetzi, promastigotes survived activity of digestive enzymes but were lost during defecation. Conclusions We demonstrated that Leishmania transition forms are more resistant to the killing effect of semi-digested blood meal than 24 h-old promastigotes. Data suggest that Leishmania mortality is not caused directly by sand fly proteases, we assume that this mortality results from toxic products of blood meal digestion. Survival of L. donovani promastigotes in refractory sand flies until blood meal defecation, together with similar mortality of Leishmania parasites incubated in vitro with midgut homogenates of susceptible as well as refractory species, contradict the previously raised hypotheses about the role of midgut proteases in sand fly vector competence to Leishmania. Electronic supplementary material The online version of this article (10.1186/s13071-018-2613-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katerina Pruzinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jozef Janda
- Cytometry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Nogueira PM, Guimarães AC, Assis RR, Sadlova J, Myskova J, Pruzinova K, Hlavackova J, Turco SJ, Torrecilhas AC, Volf P, Soares RP. Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis. Parasit Vectors 2017; 10:608. [PMID: 29246180 PMCID: PMC5732482 DOI: 10.1186/s13071-017-2568-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. Results Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. Conclusions LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.
Collapse
Affiliation(s)
- Paula M Nogueira
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, MG, Brazil. .,Departamento de Parasitologia, UFMG, Belo Horizonte, MG, Brazil.
| | | | - Rafael R Assis
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Pruzinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Salvatore J Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, KY, USA
| | - Ana C Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Farmácia, UNIFESP, São Paulo, SP, Brazil
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | |
Collapse
|
11
|
Nogueira PM, Assis RR, Torrecilhas AC, Saraiva EM, Pessoa NL, Campos MA, Marialva EF, Ríos-Velasquez CM, Pessoa FA, Secundino NF, Rugani JN, Nieves E, Turco SJ, Melo MN, Soares RP. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection. PLoS Negl Trop Dis 2016; 10:e0004848. [PMID: 27508930 PMCID: PMC4980043 DOI: 10.1371/journal.pntd.0004848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.
Collapse
Affiliation(s)
- Paula M. Nogueira
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Parasitologia, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael R. Assis
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, UNIFESP, São Paulo, São Paulo, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália L. Pessoa
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marco A. Campos
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Eric F. Marialva
- Centro de Pesquisas Leônidas e Maria Deane/FIOCRUZ, Manaus, Amazonas, Brazil
| | | | - Felipe A. Pessoa
- Centro de Pesquisas Leônidas e Maria Deane/FIOCRUZ, Manaus, Amazonas, Brazil
| | - Nágila F. Secundino
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jerônimo N. Rugani
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Elsa Nieves
- Laboratório de Parasitologia Experimental, Departamento de Biologia, Universidad de Los Andes, Mérida, Venezuela
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Maria N. Melo
- Departamento de Parasitologia, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. Soares
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Forestier CL, Gao Q, Boons GJ. Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Front Cell Infect Microbiol 2015; 4:193. [PMID: 25653924 PMCID: PMC4301024 DOI: 10.3389/fcimb.2014.00193] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
A key feature of many pathogenic microorganisms is the presence of a dense glycocalyx at their surface, composed of lipid-anchored glycoproteins and non-protein-bound polysaccharides. These surface glycolipids are important virulence factors for bacterial, fungal and protozoan pathogens. The highly complex glycoconjugate lipophosphoglycan (LPG) is one of the dominant surface macromolecules of the promastigote stage of all Leishmania parasitic species. LPG plays critical pleiotropic roles in parasite survival and infectivity in both the sandfly vector and the mammalian host. Here, we review the composition of the Leishmania glycocalyx, the chemical structure of LPG and what is currently known about its effects in the mammalian host, specifically. We will then discuss the current approaches employed to elucidate LPG functions. Finally, we will provide a viewpoint on future directions that this area of investigation could take to unravel in detail the biological activity of the specific molecular elements composing the structurally complex LPG.
Collapse
Affiliation(s)
| | - Qi Gao
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| |
Collapse
|