1
|
Su G, Wang H, Bai J, Chen G, Pei Y. A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine. Curr Drug Metab 2019; 20:292-300. [PMID: 30599107 DOI: 10.2174/1389200220666181231124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver. METHODS The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described. RESULTS Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases. CONCLUSION Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Salvadori Schafer A, D Baldissera M, Bagolin da Silva C, Sorraila de Oliveira J, Igor Magalhães de Matos AF, Lopes Dornelles G, Grando TH, Trevisan Gressler L, Stefanello S, Santi E, Pelegrine Minho A, Rodrigues D, F Souza C, L R Leal M, G Monteiro S, T A Lopes S, Melazzo de Andrade C. Copper oxide and closantel prevent alterations in hepatic energetic metabolism and reduce inflammation in Haemonchus contortus infection. Exp Parasitol 2019; 204:107726. [PMID: 31299264 DOI: 10.1016/j.exppara.2019.107726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 11/28/2022]
Abstract
The aims of this study were to evaluate if the use of copper oxide wire particles, isolated or in association with closantel, in lambs infected with Haemonchus contortus enhances the anthelmintic efficacy of closantel, as well as to evaluate the effects of treatment in hepatic energy metabolism, inflammatory markers and hematological and biochemical tests. The lambs were randomly divided into five groups (6 animals each), as follows: uninfected animals (Control); animals infected with H. contortus (HC); infected and treated with closantel (HC + CL); infected and treated with copper oxide wire particles (HC + Cu); and infected and treated with closantel plus copper oxide wire particles (HC + CL + Cu). The animals of infected groups were infected orally with H. contortus (5,000 L3 -larvae) and on day 14 post infection (p.i) the treatments were initiated. The egg per gram of feces (EPG), butyrylcholinesterase (BuChE), myeloperoxidase (MPO), adenylate kinase (AK) and pyruvate kinase (PK) activities and hematological and biochemical tests were evaluated. Treatments with copper oxide (isolated and associated) were able to reduce the EPG count on days 28, 35, 42 and 49 p.i when compared to HC group, while closantel was able to reduce EPG only from day 35 p.i. Moreover, treatment with closantel (isolated or associated) was able to prevent the inhibition of hepatic AK and PK activities caused by H. contortus infection, which may contribute to efficient intracellular energetic communication in order to maintain the balance between cellular ATP consumption and production. Butyrylcholinesterase and MPO activities were higher in infected lambs compared to uninfected, while treated groups showed lower enzymatic activity compared to the group HC. The use of all therapeutic protocols was able to reduce the EPG count. Based on these evidences, the use of copper oxide plus closantel may be considered an alternative to treat lambs infected by H. contortus.
Collapse
Affiliation(s)
- Andressa Salvadori Schafer
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil.
| | - Matheus D Baldissera
- Laboratório de Parasitologia Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cássia Bagolin da Silva
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Juliana Sorraila de Oliveira
- Laboratório de Bioquímica e Estresse Oxidativo, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | | | - Guilherme Lopes Dornelles
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Thirssa Helena Grando
- Laboratório de Parasitologia Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lucas Trevisan Gressler
- Laboratório de Parasitologia Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Simone Stefanello
- Laboratório de Endocrinologia e Metabologia Animal, Departamento de Clínica de Grandes Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Eduarda Santi
- Laboratório de Parasitologia Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Daniele Rodrigues
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Carine F Souza
- Departamento de Fisiologia e Farmacologia, Av. Roraima nº1000, Santa Maria, RS, Brazil
| | - Marta L R Leal
- Laboratório de Endocrinologia e Metabologia Animal, Departamento de Clínica de Grandes Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Silvia G Monteiro
- Laboratório de Parasitologia Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Sonia T A Lopes
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Laboratório de Análises Clínicas Veterinárias, Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Av. Roraima nº1000, Santa Maria, Brazil
| |
Collapse
|
3
|
Baldissera MD, Souza CF, Verdi CM, Dos Santos KLM, Da Veiga ML, da Rocha MIUM, Santos RCV, Vizzotto BS, Baldisserotto B. Aeromonas caviae inhibits hepatic enzymes of the phosphotransfer network in experimentally infected silver catfish: Impairment on bioenergetics. JOURNAL OF FISH DISEASES 2018; 41:469-474. [PMID: 29193157 DOI: 10.1111/jfd.12746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Several studies have been demonstrated that phosphotransfer network, through the adenylate kinase (AK) and pyruvate kinase (PK) activities, allows for new perspectives leading to understanding of disease conditions associated with disturbances in energy metabolism, metabolic monitoring and signalling. In this sense, the aim of this study was to evaluate whether experimental infection by Aeromonas caviae alters hepatic AK and PK activities of silver catfish Rhamdia quelen. Hepatic AK and PK activities decreased in infected animals compared to uninfected animals, as well as the hepatic adenosine triphosphate (ATP) levels. Also, a severe hepatic damage was observed in the infected animals due to the presence of dilation and congestion of vessels, degeneration of hepatocytes and loss of liver parenchyma architecture and sinusoidal structure. Therefore, we have demonstrated, for the first time, that experimental infection by A. caviae inhibits key enzymes linked to the communication between sites of ATP generation and ATP utilization. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes directly to hepatic damage and for a severe energetic imbalance, which may contribute to disease pathophysiology.
Collapse
Affiliation(s)
- M D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - C F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - C M Verdi
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - K L M Dos Santos
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M L Da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M I U M da Rocha
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - R C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - B S Vizzotto
- Laboratory of Molecular Biology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
4
|
Streptococcus agalactiae impairs cerebral bioenergetics in experimentally infected silver catfish. Microb Pathog 2017; 111:28-32. [PMID: 28807772 DOI: 10.1016/j.micpath.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
Abstract
It is becoming evident that bacterial infectious diseases affect brain energy metabolism, where alterations of enzymatic complexes of the mitochondrial respiratory chain and creatine kinase (CK) lead to an impairment of cerebral bioenergetics which contribute to disease pathogenesis in the central nervous system (CNS). Based on this evidence, the aim of this study was to evaluate whether alterations in the activity of complex IV of the respiratory chain and CK contribute to impairment of cerebral bioenergetics during Streptococcus agalactiae infection in silver catfish (Rhamdia quelen). The activity of complex IV of the respiratory chain in brain increased, while the CK activity decreased in infected animals compared to uninfected animals. Brain histopathology revealed inflammatory demyelination, gliosis of the brain and intercellular edema in infected animals. Based on this evidence, S. agalactiae infection causes an impairment in cerebral bioenergetics through the augmentation of complex IV activity, which may be considered an adaptive response to maintain proper functioning of the electron respiratory chain, as well as to ensure ongoing electron flow through the electron transport chain. Moreover, inhibition of cerebral CK activity contributes to lower availability of ATP, contributing to impairment of cerebral energy homeostasis. In summary, these alterations contribute to disease pathogenesis linked to the CNS.
Collapse
|
5
|
Baldissera MD, Souza CF, Grings M, Parmeggiani BS, Leipnitz G, Moreira KLS, da Rocha MIUM, da Veiga ML, Santos RCV, Stefani LM, Baldisserotto B. Inhibition of the mitochondrial respiratory chain in gills of Rhamdia quelen experimentally infected by Pseudomonas aeruginosa: Interplay with reactive oxygen species. Microb Pathog 2017; 107:349-353. [PMID: 28414167 DOI: 10.1016/j.micpath.2017.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
It has long been recognized that there are several infectious diseases linked to the impairment of enzymatic complexes of the mitochondrial respiratory chain, with consequent production of reactive oxygen species (ROS), that contribute to disease pathogenesis. In this study, we determined whether the inhibition on mitochondrial respiratory chain might be considered a pathway involved in the production of ROS in gills of Rhamdia quelen experimentally infected by P. aeruginosa. The animals were divided into two groups with six fish each: uninfected (the negative control group) and infected (the positive control group). On day 7 post-infection (PI), animals were euthanized and the gills were collected to assess the activities of complexes I-III, II and IV of the respiratory chain, as well as ROS levels. The activities of complexes I-III, II and IV of the respiratory chain in gills decreased, while the ROS levels increased in infected compared to uninfected animals. Moreover, a significant negative correlation was found between enzymatic activity of the complexes I-III and IV related to ROS levels in P. aeruginosa infected animals, corroborating to our hypothesis that inhibition on complexes of respiratory chain leads to ROS formation. Also, microscopic severe gill damage and destruction of primary and secondary lamellae were observed in infected animals, with the presence of hyperplasia, leukocytic infiltration and telangiectasia. In summary, we have demonstrated, for the first time, that experimental infection by P. aeruginosa inhibits the activities of mitochondrial complexes of respiratory chain and, consequently, impairs the cellular energy homeostasis. Moreover, the inhibition on mitochondrial complexes I-III and IV are linked to the ROS production, contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Mateus Grings
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Belisa S Parmeggiani
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karen L S Moreira
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Marcelo L da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roberto C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Graduate School of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Baldissera MD, Souza CF, Santos RC, Stefani LM, Moreira KLS, da Veiga ML, da Rocha MIU, Baldisserotto B. Pseudomonas aeruginosa strain PA01 impairs enzymes of the phosphotransfer network in the gills of Rhamdia quelen. Vet Microbiol 2017; 201:121-125. [DOI: 10.1016/j.vetmic.2017.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 11/16/2022]
|
7
|
Obiorah PO, Ugochukwu ICI, Ugochukwu EI. Capillary refill time, bleeding time, clotting time, erythrocyte sedimentation rate and prothrombin time in natural cases of canine Trypanosoma congolense infection. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Nerolidol-loaded nanospheres prevent hepatic oxidative stress of mice infected by Trypanosoma evansi. Parasitology 2016; 144:148-157. [PMID: 27748203 DOI: 10.1017/s0031182016001803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this study was to evaluate the effect of nerolidol free (N-F) and nerolidol-loaded in nanospheres (N-NS) on the hepatic antioxidant/oxidant status of mice experimentally infected by Trypanosoma evansi. In the liver it was measured: reactive oxygen species (ROS), thiobarbituric reactive acid substances (TBARS) and non-protein thiols (NPSH), catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) and performed histopathological examination. In addition, seric levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver samples from mice infected by T. evansi showed increased (P < 0·05) ROS, TBARS, AST and ALT levels and SOD activity, and decreased NPSH levels and CAT activity (P < 0·05) compared with uninfected animals. N-NS treatment prevented (P < 0·05) ROS and TBARS increase, and increased NPSH levels, and ameliorate CAT and SOD activities on liver of infected mice. Moreover, N-NS treatment reduced (P < 0·05) AST and ALT levels, and prevented histopathological changes caused by the parasite. N-NS protected the liver from the oxidative stress caused by T. evansi, which might be due to its antioxidant properties. Nerolidol might be considered a promising therapeutic agent against oxidative stress, and nanotechnology is an encouraging approach to be explored.
Collapse
|