1
|
Ihara F, Kyan H, Takashima Y, Ono F, Hayashi K, Matsuo T, Igarashi M, Nishikawa Y, Hikosaka K, Sakamoto H, Nakamura S, Motooka D, Yamauchi K, Ichikawa-Seki M, Fukumoto S, Sasaki M, Ikadai H, Kusakisako K, Ohari Y, Yoshida A, Sasai M, Grigg ME, Yamamoto M. Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages. Nat Commun 2024; 15:4278. [PMID: 38778039 PMCID: PMC11111807 DOI: 10.1038/s41467-024-47625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.
Collapse
Affiliation(s)
- Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hisako Kyan
- Okinawa Prefectural Institute of Health and Environment, Uruma, Okinawa, 904-2241, Japan
| | - Yasuhiro Takashima
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1112, Japan
- Center for One Medicine Translational Research, COMIT, Gifu University, Gifu, 501-1112, Japan
| | - Fumiko Ono
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Kei Hayashi
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Tomohide Matsuo
- Joint Faculty of Veterinary Medicine Kagoshima University, Kagoshima, 890-0065, Japan
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Hirokazu Sakamoto
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Yamauchi
- Laboratory of Wildlife Management, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Motoki Sasaki
- Laboratory of Veterinary Anatomy, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Yuma Ohari
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, 20892, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Vallejo R, Benavides J, Arteche-Villasol N, Sánchez-Sánchez R, Calero-Bernal R, Ferreras MC, Criado M, Pérez V, Ortega-Mora LM, Gutiérrez-Expósito D. Experimental infection of sheep at mid-pregnancy with archetypal type II and type III Toxoplasma gondii isolates exhibited different phenotypic traits. Vet Parasitol 2023; 315:109889. [PMID: 36753878 DOI: 10.1016/j.vetpar.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii is a major cause of reproductive failure in small ruminants. Genotypic diversity of T. gondii strains has been associated with variations in phenotypic traits in in vitro and murine models. However, whether such diversity could influence the outcome of infection in small ruminants remains mostly unexplored. Here, we investigate the outcome of oral challenge in sheep at mid-pregnancy with 10 sporulated oocysts from three different T. gondii isolates belonging to archetypal II and III and selected according to their genetic and phenotypic variations shown in previous studies. Seventy-three pregnant sheep were divided in four groups: G1 infected with TgShSp1 isolate (type II, ToxoDB#3), G2 with TgShSp16 isolate (type II, ToxoDB#3), G3 with TgShSp24 isolate (type III, ToxoDB#2) and G4 of uninfected control sheep. Two different approaches were carried out within this study: (i) the outcome for the pregnancy after infection (n = 33) and (ii) the lesions and parasite tropism and burden at 14 and 28 days post infection (dpi) (n = 40). The onset of hyperthermia and seroconversion occurred one and two days later, respectively in G1 when compared to G2 and G3. However, sheep that suffered from reproductive failure, either by abortion, foetal dead at the time of euthanasia or stillbirth were similar among infected groups (50%, 40% and 47%, respectively). Histological lesions in placentomes and foetal tissues from euthanized animals from the second approach were only detected at 28 dpi and mainly in G1. At 14 dpi, T. gondii-DNA was only detected in G1 in the 11% of the placentomes. However, at 28 dpi the frequency of detection in placentomes was higher in G1 (96%) than in G2 and G3 (7% and 47%, respectively) besides in foetuses was lower in G2 (20%) than in G1 and G3 (100% and 87%, respectively). Regarding late abortions, stillbirths, and lambs of G1, G2 and G3, the frequency of microscopic lesions was similar between groups (79%, 78% and 67%, respectively) whereas T. gondii-DNA was evidenced in 100%, 55% and 100%, respectively. These recently obtained T. gondii isolates led to similar reproductive losses but intra- and inter-genotype variations in the rise of hyperthermia, dynamics of antibodies, frequency of lesions and parasite detection and distribution. Thus, the different phenotypic traits of the isolates could influence the outcome of the infection and mechanisms responsible for it, and further investigations are warranted.
Collapse
Affiliation(s)
- Raquel Vallejo
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain.
| | - Noive Arteche-Villasol
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| | - Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Ma Carmen Ferreras
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| | - Miguel Criado
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| | - Valentín Pérez
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Daniel Gutiérrez-Expósito
- Animal Health Department, University of Leon, Campus de Vegazana s/n, León 24071, Spain; Instituto de Ganadería de Montaña, (CSIC-ULE), Grulleros, León 24346, Spain
| |
Collapse
|
3
|
Cui Z, Gong Y, Luo X, Zheng N, Tan S, Liu S, Li Y, Wang Q, Sun F, Hu M, Pan W, Yang X. β-Glucan alleviates goal-directed behavioral deficits in mice infected with Toxoplasma gondii. Parasit Vectors 2023; 16:65. [PMID: 36782332 PMCID: PMC9926625 DOI: 10.1186/s13071-023-05686-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a neuroinvasive parasite causing neuroinflammation, which in turn is associated with a higher risk for several psycho-behavioral disorders. There is an urgent need to identify drugs capable of improving cognitive deficits induced by T. gondii infection. β-Glucan, an active ingredient in mushrooms, could significantly enhance immunity. However, the effects of β-glucan against neuroinflammation and cognitive decline induced by T. gondii infection remain unknown. The present study aimed to investigate the neuroprotective effect of β-glucan on goal-directed behavior of mice chronically infected by T. gondii Wh6 strain. METHODS A mice model of chronic T. gondii Wh6 infection was established by infecting mice by oral gavage with 10 cysts of T. gondii Wh6. Intraperitoneal injection of β-glucan was manipulated 2 weeks before T. gondii infection. Performance of the infected mice on the Y-maze test and temporal order memory (TOM) test was used to assess the goal-directed behavior. Golgi-Cox staining, transmission electron microscopy, immunofluorescence, real-time PCR and western blot assays were used to detect prefrontal cortex-associated pathological change and neuroinflammation. RESULTS The administration of β-glucan significantly prevented T. gondii Wh6-induced goal-directed behavioral impairment as assessed behaviorally by the Y-maze test and TOM test. In the prefrontal cortex, β-glucan was able to counter T. gondii Wh6-induced degeneration of neurites, impairment of synaptic ultrastructure and decrease of pre- and postsynaptic protein levels. Also, β-glucan significantly prevented the hyperactivation of pro-inflammatory microglia and astrocytes, as well as the upregulation of proinflammatory cytokines caused by chronic T. gondii Wh6 infection. CONCLUSIONS This study revealed that β-glucan prevents goal-directed behavioral impairment induced by chronic T. gondii infection in mice. These findings suggest that β-glucan may be an effective drug candidate to prevent T. gondii-associated psycho-behavioral disorders including goal-directed behavioral injury.
Collapse
Affiliation(s)
- Zeyu Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaotong Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Niuyi Zheng
- Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Shimin Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Shuxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Youwei Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Qingling Wang
- Department of Pathology, Basic Medical College, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
4
|
Duong HD, Taniguchi Y, Takashima Y, Sekiguchi S, Aye KM, Ahmadi P, Bui LK, Irie T, Nagayasu E, Yoshida A. Diagnostic value of recombinant nanoluciferase fused Toxoplasma gondii antigens in Luciferase-linked Antibody Capture Assay (LACA) for Toxoplasma infection in pigs. J Vet Med Sci 2022; 84:905-913. [PMID: 35584943 PMCID: PMC9353080 DOI: 10.1292/jvms.22-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is a widespread protozoan zoonosis. Since ingesting undercooked meat harboring Toxoplasma gondii cyst is considered one of the major transmission routes to
humans, the screening of T. gondii in meat-producing animals can reduce the risk of food-borne toxoplasmosis in humans. Among serological diagnostic methods,
Luciferase-linked Antibody Capture Assay (LACA) has been found to be a promising platform with high sensitivity and specificity. In this study, we aimed to evaluate recombinant
nanoluciferase fused-T. gondii antigens (rNluc-GRA6, rNluc-GRA7, rNluc-GRA8 and rNluc-BAG1) for their potential use in LACA for pigs. As a result, the sensitivity of GRA6-,
GRA7-, GRA8- and BAG1-LACA were 70.0%, 80.0%, 80.0% and 30.0% with specificity 87.0%, 81.5%, 74.1% and 50.0%, respectively. The cocktail LACA using a mixture of rNluc-GRA6, rNluc-GRA7 and
rNluc-GRA8 indicated higher sensitivity (90.0%) and a similar specificity (96.3%) in comparison with the commercial ELISA kit. Compared to the Dye-Test as a reference test, cocktail LACA
showed strong agreement (kappa value=0.811) when we assessed pig sera collected at the slaughterhouse. In addition, we also successfully established the rapid LACA format for the detection
of Toxoplasma infection in pigs (called Rapid-LACA) in which the test could be performed within 30 min. In Rapid-LACA, the protein A pre-coated/blocked plates could be
preserved at −30°C, 4°C or room temperature conditions for at least two months without compromising on the quality of assay.
Collapse
Affiliation(s)
- Hieu Duc Duong
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki.,Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture
| | - Yuji Taniguchi
- Department of Veterinary Parasitology, Faculty of Applied Biological Sciences, Gifu University
| | - Yasuhiro Takashima
- Department of Veterinary Parasitology, Faculty of Applied Biological Sciences, Gifu University
| | - Satoshi Sekiguchi
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki.,Centre for Animal Diseases Control (CADIC), University of Miyazaki
| | - Khin Myo Aye
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki.,Parasitology Research Division, Department of Medical Research
| | - Parnian Ahmadi
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki
| | - Linh Khanh Bui
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture
| | - Takao Irie
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki.,Centre for Animal Diseases Control (CADIC), University of Miyazaki
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki.,Centre for Animal Diseases Control (CADIC), University of Miyazaki
| |
Collapse
|
5
|
Calero-Bernal R, Fernández-Escobar M, Katzer F, Su C, Ortega-Mora LM. Unifying Virulence Evaluation in Toxoplasma gondii: A Timely Task. Front Cell Infect Microbiol 2022; 12:868727. [PMID: 35573788 PMCID: PMC9097680 DOI: 10.3389/fcimb.2022.868727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii, a major zoonotic pathogen, possess a significant genetic and phenotypic diversity that have been proposed to be responsible for the variation in clinical outcomes, mainly related to reproductive failure and ocular and neurological signs. Different T. gondii haplogroups showed strong phenotypic differences in laboratory mouse infections, which provide a suitable model for mimicking acute and chronic infections. In addition, it has been observed that degrees of virulence might be related to the physiological status of the host and its genetic background. Currently, mortality rate (lethality) in outbred laboratory mice is the most significant phenotypic marker, which has been well defined for the three archetypal clonal types (I, II and III) of T. gondii; nevertheless, such a trait seems to be insufficient to discriminate between different degrees of virulence of field isolates. Many other non-lethal parameters, observed both in in vivo and in vitro experimental models, have been suggested as highly informative, yielding promising discriminatory power. Although intra-genotype variations have been observed in phenotypic characteristics, there is no clear picture of the phenotypes circulating worldwide; therefore, a global overview of T. gondii strain mortality in mice is presented here. Molecular characterization has been normalized to some extent, but this is not the case for the phenotypic characterization and definition of virulence. The present paper proposes a baseline (minimum required information) for the phenotypic characterization of T. gondii virulence and intends to highlight the needs for consistent methods when a panel of T. gondii isolates is evaluated for virulence.
Collapse
Affiliation(s)
- Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| | - Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Katzer
- Disease Control Department, Moredun Research Institute, Edinburgh, United Kingdom
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| |
Collapse
|
6
|
Toxoplasma gondii in humans and animals in Japan: An epidemiological overview. Parasitol Int 2021; 87:102533. [PMID: 34968753 DOI: 10.1016/j.parint.2021.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis is a cosmopolitan protozoan zoonosis caused by Toxoplasma gondii infamous for inducing severe clinical manifestations in humans. Although the disease affects at least one billion people worldwide, it is neglected in many countries including developed ones. In literature, the epidemiological data documenting the actual incidence of the disease in humans and domestic animals from Japan are limited and importantly many earlier papers on T. gondii infections were published in Japanese and a considerable part is not available online. Herein, we review the current summary about the epidemiological situation of T. gondii infection in Japan and the potential associated risk factors in humans and animals as well as the different T. gondii genotypes isolated in Japan. Several T. gondii isolates have been identified among cats (TgCatJpTy1/k-3, TgCatJpGi1/TaJ, TgCatJpObi1 and TgCatJpOk1-4) and goats (TgGoatJpOk1-13). This literature review underscores the need for a nationwide investigation of T. gondii infection in Japanese people and assessment of the socioeconomic impact of the disease burden. Furthermore, epidemiological studies in domestic and wild animals and estimation of degree of contamination of soil or water with T. gondii oocysts are needed, for a better understanding of the scope of this public health concern.
Collapse
|
7
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
8
|
Fernández-Escobar M, Calero-Bernal R, Regidor-Cerrillo J, Vallejo R, Benavides J, Collantes-Fernández E, Ortega-Mora LM. In vivo and in vitro models show unexpected degrees of virulence among Toxoplasma gondii type II and III isolates from sheep. Vet Res 2021; 52:82. [PMID: 34112256 PMCID: PMC8194156 DOI: 10.1186/s13567-021-00953-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is an important zoonotic agent with high genetic diversity, complex epidemiology, and variable clinical outcomes in animals and humans. In veterinary medicine, this apicomplexan parasite is considered one of the main infectious agents responsible for reproductive failure in small ruminants worldwide. The aim of this study was to phenotypically characterize 10 Spanish T. gondii isolates recently obtained from sheep in a normalized mouse model and in an ovine trophoblast cell line (AH-1) as infection target cells. The panel of isolates met selection criteria regarding such parameters as genetic diversity [types II (ToxoDB #1 and #3) and III (#2)], geographical location, and sample of origin (aborted foetal brain tissues or adult sheep myocardium). Evaluations of in vivo mortality, morbidity, parasite burden and histopathology were performed. Important variations between isolates were observed, although all isolates were classified as “nonvirulent” (< 30% cumulative mortality). The isolates TgShSp16 (#3) and TgShSp24 (#2) presented higher degrees of virulence. Significant differences were found in terms of in vitro invasion rates and tachyzoite yield at 72 h post-inoculation (hpi) between TgShSp1 and TgShSp24 isolates, which exhibited the lowest and highest rates, respectively. The study of the CS3, ROP18 and ROP5 loci allelic profiles revealed only type III alleles in ToxoDB #2 isolates and type II alleles in the #1 and #3 isolates included. We concluded that there are relevant intra- and inter-genotype virulence differences in Spanish T. gondii isolates, which could not be inferred by genetic characterization using currently described molecular markers.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Javier Regidor-Cerrillo
- SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | | | | | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Releasing latent Toxoplasma gondii cysts from host cells to the extracellular environment induces excystation. Int J Parasitol 2021; 51:999-1006. [PMID: 34081969 DOI: 10.1016/j.ijpara.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite, infects a wide variety of mammals and birds. Although T. gondii infects the brain and muscles in its latent cyst form containing bradyzoite stage parasites during chronic infection, when a chronically infected host becomes immunodeficient or is preyed upon by a predator, the latent cyst undergoes excystation. However, it is not yet known how T. gondii recognises the triggers of excystation in the microenvironment surrounding the cyst. In this study, we incubated T. gondii cysts from host cells in several solutions containing a variety of ionic compositions. Excystation occurred in a solution with an ionic composition which mimicked that of the extracellular environment. However, excystation did not occur in a solution that mimicked the intracellular environment. We also found that the specific Na+/K+ ratio and the presence of Ca2+, mimicking the extracellular environment, are required to trigger excystation. To examine whether the stage conversion of bradyzoite to tachyzoite occurs prior to egress, we constructed a gene-modified T. gondii strain expressing a green fluorescent protein specifically in the tachyzoite stage. During the process of cyst reactivation of this strain, green fluorescence was detected prior to excystation. This suggests that stage conversion from bradyzoite to tachyzoite occurs prior to cyst disruption. These results indicate that T. gondii bradyzoites monitor the ionic composition of their surroundings to recognise their expulsion from host cells, to effectively time their excystation and stage conversion.
Collapse
|
10
|
Fernández-Escobar M, Calero-Bernal R, Regidor-Cerrillo J, Vallejo R, Benavides J, Collantes-Fernández E, Ortega-Mora LM. Isolation, Genotyping, and Mouse Virulence Characterization of Toxoplasma gondii From Free Ranging Iberian Pigs. Front Vet Sci 2020; 7:604782. [PMID: 33330725 PMCID: PMC7714755 DOI: 10.3389/fvets.2020.604782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023] Open
Abstract
The present study aimed to isolate and perform molecular and phenotypic characterization of Toxoplasma gondii strains infecting Iberian pigs bred under semi-free conditions and destined for human consumption. Blood and heart tissue samples from 361 fattening pigs from 10 various herds selected in the main areas of Iberian pig production were collected at a slaughterhouse; the sera were tested for anti-T. gondii antibodies using a commercial indirect ELISA kit, and a mouse bioassay was carried out using heart muscle of seropositive individual representatives from each geographical location. Seventy-nine (21.9%) of the 361 animals tested positive for anti-T. gondii antibodies according to the serology test. Fifteen samples of myocardial tissue were subjected to bioassay and 5 isolates (TgPigSp1 to TgPigSp5) were obtained. The isolates were characterized by using 11 PCR-RFLP genetic markers; three isolates had a ToxoDB #3 genotype (3/5) and two isolates had a ToxoDB #2 genotype (2/5). The TgPigSp1 and TgPigSp4 isolates were selected for virulence in mice characterization as instances of each different RFLP-genotype found. The TgPigSp1 isolate (#2 genotype) was virulent in mice with notable cumulative mortality (87.5%) and morbidity rates (100%); the TgPigSp4 (#3) was nonvirulent and triggered mild clinical signs in 42.1% of seropositive mice. Infection dynamics and organ distribution of both isolates were analyzed; the data revealed significant differences, including substantially higher parasite load in the lung during the acute phase of infection, in mice infected with TgPigSp1 than in the case of TgPigSp4 (median parasite load 7.6 vs. 0 zoites/mg, respectively; p < 0.05). Furthermore, degrees of severity of detected histopathological lesions appeared to be related to higher parasite burdens. Taking into account the unexpectedly high mortality rate and parasite load associated with the clonal genotype III, which is traditionally considered nonvirulent in mice, the need for further investigation and characterization of the T. gondii strains circulating in any host in Europe is emphasized.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Salud Veterinaria y Zoonosis (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Rafael Calero-Bernal
- Salud Veterinaria y Zoonosis (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET-innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Raquel Vallejo
- Mountain Livestock Institute, Consejo Superior de Investigaciones Científicas-Universidad de León (CSIC-ULE), León, Spain
| | - Julio Benavides
- Mountain Livestock Institute, Consejo Superior de Investigaciones Científicas-Universidad de León (CSIC-ULE), León, Spain
| | - Esther Collantes-Fernández
- Salud Veterinaria y Zoonosis (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Salud Veterinaria y Zoonosis (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Dubey JP, Cerqueira-Cézar CK, Murata FHA, Kwok OCH, Yang YR, Su C. All about toxoplasmosis in cats: the last decade. Vet Parasitol 2020; 283:109145. [PMID: 32645556 DOI: 10.1016/j.vetpar.2020.109145] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. Toxoplasmosis continues to be of public health concern. Cats (domestic and wild felids) are the most important host in the epidemiology of toxoplasmosis because they are the only species that can excrete the environmentally resistant oocysts in feces. Cats can excrete millions of oocysts and a single cat can spread infection to many hosts. The present paper summarizes information on prevalence, persistence of infection, clinical signs, and diagnosis of T. gondii infections in domestic and wild cats for the past decade. Special emphasis is paid to genetic diversity of T. gondii isolates from cats. Review of literature indicates that a unique genotype (ToxoDB genotype #9 or Chinese 1) is widely prevalent in cats in China and it has been epidemiologically linked to outbreaks of clinical toxoplasmosis in pigs and deaths in humans in China; this genotype has rarely been detected in other countries. This review will be of interest to biologists, parasitologists, veterinarians, and public health workers.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA.
| | - C K Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - F H A Murata
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - O C H Kwok
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - Y R Yang
- Laboratory of Veterinary Pathology, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
12
|
Fukumoto J, Yamano A, Matsuzaki M, Kyan H, Masatani T, Matsuo T, Matsui T, Murakami M, Takashima Y, Matsubara R, Tahara M, Sakura T, Takeuchi F, Nagamune K. Molecular and biological analysis revealed genetic diversity and high virulence strain of Toxoplasma gondii in Japan. PLoS One 2020; 15:e0227749. [PMID: 32012177 PMCID: PMC6996823 DOI: 10.1371/journal.pone.0227749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is classified into 16 haplogroups based on a worldwide genotyping study of the parasite. However, only a few isolates from Japan were included in this analysis. To conduct more precise genotyping of T. gondii, we examined the genotypes of Japanese isolates in this study. DNA sequences of 6 loci were determined in 17 Japanese isolates and compared with those of strains of 16 haplogroups. As a result, Japanese isolates were classified into four groups. We investigated the virulence of some Japanese isolates and found a highly virulent strain in mice, comparable to that of RH strain, although this Japanese isolate was sister to strains of haplogroup 2, which show moderate virulence in mice. We further investigated whether this high virulence isolate had different virulence mechanism and strategy to adapt to Japanese host from other strains by comparing the virulence-related genes, ROP5, 18 and the immunomodulatory gene, ROP16 of the isolate with those of archetypical strains (GT1, ME49 and VEG). This analysis indicated the high virulence of the isolate in mice was partly explained by gene sequences of ROP5 and ROP16. These findings lead to the elucidation of biodiversity of T. gondii and have potential to optimize the diagnostic protocol.
Collapse
Affiliation(s)
- Junpei Fukumoto
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akinori Yamano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motomichi Matsuzaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Hisako Kyan
- Okinawa Prefectural Institute of Health and Environment, Uruma, Okinawa, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Toshihiro Matsui
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Mami Murakami
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, University of Gifu, Gifu, Gifu, Japan
| | - Yasuhiro Takashima
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, University of Gifu, Gifu, Gifu, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Takaya Sakura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute National Center for Global Health and Medicine, Shinjyuku-ku, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
13
|
Masatani T, Oyamada S, Inoue R, Tsujio M, Hatai H, Matsui T, Matsuo T. In vivo characterization of a Toxoplasma gondii strain TgCatJpTy1/k-3 isolated from a stray cat in Japan. Parasitol Int 2019; 74:101995. [PMID: 31634629 DOI: 10.1016/j.parint.2019.101995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
The Toxoplasma gondii strain TgCatJpTy1/k-3 (K-3), isolated from a stray cat in Tokyo, Japan, is categorized as a type II genotype. Since the K-3 strain is empirically known to form relatively larger cysts and exhibit weak pathogenesis in a mouse, it could serve as a useful model organism to study chronic T. gondii infection in the host. However, a detailed biological characterization of this strain had not been performed. In this study, we thoroughly assessed the K-3 strain in vivo using a mouse model. Tests indicated that pathogenicity of the K-3 strain was lower than that of the PLK strain, a clonal laboratory strain with a moderately pathogenic type II genotype. Further, cyst sizes of the K-3 strain were significantly larger than those of the PLK strain. Interestingly, K-3 cyst sizes in T. gondii-resistant ICR mice were larger than those in T. gondii-susceptible C57BL/6N mice. Our study suggests that the K-3 strain is suitable to study T. gondii cystogenesis and chronic infection, which are currently difficult to analyze using cell-adopted T. gondii strains.
Collapse
Affiliation(s)
- Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Shohei Oyamada
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryota Inoue
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masashi Tsujio
- Laboratory of Anatomy, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hitoshi Hatai
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toshihiro Matsui
- Seisen University, Higashi Gotanda, Shinagawa-ku, Tokyo 141-8642, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
14
|
Amouei A, Sarvi S, Sharif M, Aghayan SA, Javidnia J, Mizani A, Moosazadeh M, Shams N, Hosseini SA, Hosseininejad Z, Nayeri Chegeni T, Badali H, Daryani A. A systematic review of Toxoplasma gondii genotypes and feline: Geographical distribution trends. Transbound Emerg Dis 2019; 67:46-64. [PMID: 31464067 DOI: 10.1111/tbed.13340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii (T. gondii) is well known for its ability to virtually infect all warm-blooded vertebrates. Although felines as the definitive hosts have an important role in the epidemiology of toxoplasmosis, there are few descriptions of genetic diversity in the world. The present review study aimed to describe the population structure of T. gondii in these animal species. For the purpose of the study, five English language databases reporting data on T. gondii genotyping in cats were searched within March-June 2019. This study is registered on the site of CAMARADES-NC3Rs (15-Jan-2018). The searching process resulted in the inclusion of 50 reports published from 1992 to June 2019. The data revealed that 47,390 samples were genotyped into 662 T. gondii DNA/isolates. Globally, atypical genotypes were predominant (47.7%, n = 316); in addition, Type II clonal strains were the second most common genotype (37%, n = 244). These results suggested an epidemic population structure in America and Asia, and a clonal population structure in Europe and Africa. Genotype #3 was found to be dominant in Africa, Europe and Oceania continents. Furthermore, genotypes #9 and #5 were prevalent in Asia and America, respectively. Additionally, genotypes #2, #3, #5 and #20 were common genotypes in domestic and sylvatic cycles from family Felidae. Collectively, this systematic review indicated a large degree of genetic diversity and circulation of mouse-virulent T. gondii strains in this family. However, further studies are necessary to better understand the population structure of T. gondii in these animal species and determine the significance of their features.
Collapse
Affiliation(s)
- Afsaneh Amouei
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Department of Basic Sciences Faculty of Medicine, Sari Branch Islamic Azad University, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Azadeh Mizani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mahmood Moosazadeh
- Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nemat Shams
- Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Seyed Abdollah Hosseini
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tooran Nayeri Chegeni
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
15
|
A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol Int 2019; 72:101935. [PMID: 31153918 DOI: 10.1016/j.parint.2019.101935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii strains have been isolated all over the world and their virulence has been examined mainly using laboratory mice. However, T. gondii differs in virulence depending on the host animal species. Therefore, to evaluate the virulence of each strain in domestic animals, it is necessary to examine using not only mice but also the concerned animals. We have shown that TgCatJpOk4, a T. gondii strain recently isolated in Okinawa, Japan, has a high virulence against laboratory mice, comparable to highest virulent RH strain in mice; however, the virulence to domestic animals remains unknown. In this study, we examined the virulence using the Microminipig. After infection, four out of five infected pigs showed severe clinical symptoms: inappetence, hypoactivity and tachypnea. Eventually, three out of the five infected pigs succumbed before the end of the observation. Among the three dead pigs, histological analysis revealed that interstitial pneumonia and spotty necrosis in the liver indicating that the TgCatJpOk4 strain has a high virulence not only in laboratory mice, but in pigs as well.
Collapse
|
16
|
Appiah-Kwarteng C, Saito T, Toda N, Kitoh K, Nishikawa Y, Adenyo C, Kayang B, Owusu EO, Ohya K, Inoue-Murayama M, Kawahara F, Nagamune K, Takashima Y. Native SAG1 in Toxoplasma gondii lysates is superior to recombinant SAG1 for serodiagnosis of T. gondii infections in chickens. Parasitol Int 2019; 69:114-120. [PMID: 30630114 DOI: 10.1016/j.parint.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii can infect almost all mammals and birds, including chickens. The aim of this study was to identify an appropriate immunogenic antigen for serodiagnosis of T. gondii infections in chickens. We examined serum samples from chickens that were intravenously or intraperitoneally infected with 106-108 tachyzoites of T. gondii strains PLK, RH, CTG, ME49 or TgCatJpGi1/TaJ using enzyme-linked immunosorbent assays (ELISAs), latex agglutination tests (LATs) and western blotting. Regardless of parasite strain or infection dose and route, the commercial LAT was positive for almost all sera collected 1 week post-infection. However, at 2 weeks post-infection, LATs were negative in the same birds. ELISAs using the Escherichia coli-produced recombinant T. gondii antigens SAG1 and GRA7 showed strong signals at 1-2 weeks post infection, but thereafter diminished for the majority of serum samples. In contrast, western blotting against crude tachyzoite antigens showed a persistent band up to 4 weeks post-infection. Sera from these chickens reacted much more strongly with SAG1 from crude tachyzoite antigens than with recombinant SAG1. Even in experimentally-infected birds whose parasite burdens in tissue were undetectable, sera still reacted with native SAG1. We tested sera from free-range chickens on a small farm in Ghana, Africa, using western blotting and found that the serum of one bird reacted with a single band of approximately 27 kDa, the putative molecular weight of SAG1. Thus we conclude that native SAG1, but not E. coli-produced recombinant SAG1, is suitable for serodiagnosis of T. gondii infections in chickens.
Collapse
Affiliation(s)
- Cornelia Appiah-Kwarteng
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Veterinary Parasitological Diseases, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Taizo Saito
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Veterinary Parasitological Diseases, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Natsuki Toda
- Department of Veterinary Parasitological Diseases, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Katsuya Kitoh
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Veterinary Parasitological Diseases, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshibumi Nishikawa
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Christopher Adenyo
- Livestock and Poultry Research Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana
| | - Boniface Kayang
- Livestock and Poultry Research Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana
| | - Ebenezer Oduro Owusu
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana
| | - Kenji Ohya
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Microbiology, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Kyoto 606-8203, Japan
| | - Fumiya Kawahara
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Mocky Poultry Practice, Shinmeidai 2-5-33-810, Hamura, Tokyo 205-0023, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhiro Takashima
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Veterinary Parasitological Diseases, Faculty of Applied Biological Science, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
17
|
Murakami M, Mori T, Takashima Y, Nagamune K, Fukumoto J, Kitoh K, Sakai H, Maruo K. A case of pulmonary toxoplasmosis resembling multiple lung metastases of nasal lymphoma in a cat receiving chemotherapy. J Vet Med Sci 2018; 80:1881-1886. [PMID: 30404954 PMCID: PMC6305506 DOI: 10.1292/jvms.18-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An 11-year-old cat presented with nasal discharge and lacrimation and was diagnosed with
nasal lymphoma. Although the cat showed favorable progression after undergoing
chemotherapy, CT imaging demonstrated enlarged pulmonary nodules caused by
Toxoplasma gondii. Following the cessation of chemotherapy, the cat was
prescribed clindamycin hydrochloride for toxoplasmosis treatment; however, the cat
developed kidney lymphoma and died. No T. gondii organisms were observed
in the whole body necropsy specimens. It is known that immunocompromised human patients,
including those who undergo chemotherapy, are considered at risk for toxoplasmosis.
However, the risk of developing toxoplasmosis in cats undergoing chemotherapy is currently
unknown. Findings from this case report suggest that cats with chemotherapy-resistant
pulmonary masses might have a T. gondii infection rather than metastatic
disease.
Collapse
Affiliation(s)
- Mami Murakami
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takashi Mori
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Takashima
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Junpei Fukumoto
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Katsuya Kitoh
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroki Sakai
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kohji Maruo
- Department of Animal Nursing, Faculty of Animal Nursing, Yamazaki Gakuen University, 4-7-2 Minami-osawa, Hachioji, Tokyo 192-0364, Japan
| |
Collapse
|