1
|
Dubbioso R, Ruggiero L, Esposito M, Tarantino P, De Angelis M, Aruta F, Pappatà S, Ugga L, Piperno A, Iorio R, Santoro L, Iodice R, Manganelli F. Different cortical excitability profiles in hereditary brain iron and copper accumulation. Neurol Sci 2019; 41:679-685. [PMID: 31773358 DOI: 10.1007/s10072-019-04147-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Neurodegeneration with brain iron accumulation (NBIA) and Wilson's disease (WD) is considered the prototype of neurodegenerative disorders characterised by the overloading of iron and copper in the central nervous system. Growing evidence has unveiled the involvement of these metals in brain cortical neurotransmission. Aim of this study was to assess cortical excitability profile due to copper and iron overload. METHODS Three patients affected by NBIA, namely two patients with a recessive hereditary parkinsonism (PARK9) and one patient with aceruloplasminemia and 7 patients with neurological WD underwent transcranial magnetic stimulation (TMS) protocols to assess cortical excitability. Specifically, we evaluated the motor thresholds that reflect membrane excitability related to the voltage-gated sodium channels in the neurons of the motor system and the ease of activation of motor cortex via glutamatergic networks, and ad hoc TMS protocols to probe inhibitory-GABAergic (short interval intracortical inhibition, SICI; short-latency afferent inhibition, SAI; cortical silent period, CSP) and excitatory intracortical circuitry (intracortical facilitation, ICF). RESULTS Patients with NBIA exhibited an abnormal prolongation of CSP respect to HC and WD patients. On the contrary, neurological WD displayed higher motor thresholds and reduced CSP and SICI. CONCLUSION Hereditary conditions due to overload of copper and iron exhibited peculiar cortical excitability profiles that can help during differential diagnosis between these conditions. Moreover, such results can give us more clues about the role of metals in acquired neurodegenerative disorders, such as Parkinson disease, Alzheimer disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy.
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Marcello Esposito
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Paola Tarantino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Marcello De Angelis
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Francesco Aruta
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Council of Research, Via S. Pansini, 5 IT-80131, Napoli, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaele Iorio
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
3
|
Weissbach A, Bäumer T, Brüggemann N, Tadic V, Zittel S, Cheng B, Thomalla G, Klein C, Münchau A. Premotor-motor excitability is altered in dopa-responsive dystonia. Mov Disord 2015; 30:1705-9. [DOI: 10.1002/mds.26365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics; University of Luebeck; Germany
- Department of Neurology; University of Luebeck; Germany
| | - Tobias Bäumer
- Institute of Neurogenetics; University of Luebeck; Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics; University of Luebeck; Germany
- Department of Neurology; University of Luebeck; Germany
| | - Vera Tadic
- Institute of Neurogenetics; University of Luebeck; Germany
- Department of Neurology; University of Luebeck; Germany
| | - Simone Zittel
- Institute of Neurogenetics; University of Luebeck; Germany
| | - Bastian Cheng
- Department of Neurology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Götz Thomalla
- Department of Neurology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | | | | |
Collapse
|
4
|
Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson's disease: Clinical phenotypes and molecular mechanisms. Mov Disord 2015; 30:770-9. [DOI: 10.1002/mds.26243] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jin-Sung Park
- Department of Neurogenetics; Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney; St. Leonards New South Wales Australia
| | - Nicholas F. Blair
- Department of Neurogenetics; Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney; St. Leonards New South Wales Australia
| | - Carolyn M. Sue
- Department of Neurogenetics; Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney; St. Leonards New South Wales Australia
| |
Collapse
|
5
|
Bembenek JP, Kurczych K, Członkowska A. TMS-induced motor evoked potentials in Wilson's disease: a systematic literature review. Bioelectromagnetics 2015; 36:255-66. [PMID: 25808411 DOI: 10.1002/bem.21909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/22/2015] [Indexed: 12/18/2022]
Abstract
Wilson's disease (WD) is a metabolic brain disease resulting from improper copper metabolism. Although pyramidal symptoms are rarely observed, subclinical injury is highly possible as copper accumulates in all brain structures. The usefulness of motor evoked potentials (MEPs) in pyramidal tracts damage evaluation still appears to be somehow equivocal. We searched for original papers assessing the value of transcranial magnetic stimulation elicited MEPs with respect to motor function of upper and lower extremity in WD. We searched PubMed for original papers evaluating use of MEPs in WD using key words: "motor evoked potentials Wilson's disease" and "transcranial magnetic stimulation Wilson's disease." We found six articles using the above key words. One additional article and one case report were found while viewing the references lists. Therefore, we included eight studies. Number of patients in studies was low and their clinical characteristic was variable. There were also differences in methodology. Abnormal MEPs were confirmed in 20-70% of study participants. MEPs were not recorded in 7.6-66.7% of patients. Four studies reported significantly increased cortical excitability (up to 70% of patients). Prolonged central motor conduction time was observed in four studies (30-100% of patients). One study reported absent or prolonged central motor latency in 66.7% of patients. Although MEPs may be abnormal in WD, this has not been thoroughly assessed. Hence, further studies are indispensable to evaluate MEPs' usefulness in assessing pyramidal tract damage in WD.
Collapse
Affiliation(s)
- Jan P Bembenek
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | |
Collapse
|
6
|
Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol 2013; 11:59-79. [PMID: 23814539 PMCID: PMC3580793 DOI: 10.2174/157015913804999469] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology; University of Kiel, 24105 Kiel, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, England
| | - Ana Westenberger
- Schilling Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| |
Collapse
|