1
|
Moondra P, Jimenez-Shahed J. Profiling deutetrabenazine extended-release tablets for tardive dyskinesia and chorea associated with Huntington's disease. Expert Rev Neurother 2024; 24:849-863. [PMID: 38982802 DOI: 10.1080/14737175.2024.2376107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Tardive dyskinesia (TD) and Huntington's disease (HD)-associated chorea are persistent and disabling hyperkinetic disorders that can be treated with vesicular monoamine transporter type 2 (VMAT2) inhibitors, including the recently approved once-daily (QD) formulation of deutetrabenazine (DTBZ ER). While its efficacy and safety profile have not been directly investigated, currently available data confirms bioequivalence and similar bioavailability to the twice-daily formulation (DTBZ BID). AREAS COVERED The authors briefly review the pivotal trials establishing efficacy of DTBZ for TD and HD-associated chorea, the pharmacokinetic data for bioequivalence between QD and BID dosing of DTBZ, as well as dose proportionality evidence, titration recommendations, and safety profile for DTBZ ER. EXPERT OPINION Long-term data show that DTBZ is efficacious and well tolerated for the treatment of TD and HD-associated chorea. DTBZ ER likely demonstrates therapeutic equivalence with no new safety signals. Due to the lack of comparative clinical trial data, no evidence-based recommendation about choice of VMAT2 inhibitor or switching between VMAT2 inhibitors can be made about best practice. Ultimately, QD dosing may offer the chance of improved medication adherence, an important consideration in patients with complex treatment regimens and/or patients with cognitive decline.
Collapse
Affiliation(s)
- P Moondra
- Clinical Movement Disorders Fellow, The Mount Sinai Hospital, New York, NY, USA
| | - J Jimenez-Shahed
- Neurology and Neurosurgery, Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Sharma G, Biswas SS, Mishra J, Navik U, Kandimalla R, Reddy PH, Bhatti GK, Bhatti JS. Gut microbiota dysbiosis and Huntington's disease: Exploring the gut-brain axis and novel microbiota-based interventions. Life Sci 2023; 328:121882. [PMID: 37356750 DOI: 10.1016/j.lfs.2023.121882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Huntington's disease (HD) is a complex progressive neurodegenerative disorder affected by genetic, environmental, and metabolic factors contributing to its pathogenesis. Gut dysbiosis is termed as the alterations of intestinal microbial profile. Emerging research has highlighted the pivotal role of gut dysbiosis in HD, focusing on the gut-brain axis as a novel research parameter in science. This review article provides a comprehensive overview of gut microbiota dysbiosis and its relationship with HD and its pathogenesis along with the future challenges and opportunities. The focuses on the essential mechanisms which link gut dysbiosis to HD pathophysiology including neuroinflammation, immune system dysregulation, altered metabolites composition, and neurotransmitter imbalances. We also explored the impacts of gut dysbiosis on HD onset, severity, and symptoms such as cognitive decline, motor dysfunction, and psychiatric symptoms. Furthermore, we highlight recent advances in therapeutics including microbiota-based therapeutic approaches, including dietary interventions, prebiotics, probiotics, fecal microbiota transplantation, and combination therapies with conventional HD treatments and their applications in managing HD. The future challenges are also highlighted as the heterogeneity of gut microbiota, interindividual variability, establishing causality between gut dysbiosis and HD, identifying optimal therapeutic targets and strategies, and ensuring the long-term safety and efficacy of microbiota-based interventions. This review provides a better understanding of the potential role of gut microbiota in HD pathogenesis and guides the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Garvita Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Shristi Saroj Biswas
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
The Vasopressin 1a Receptor Antagonist SRX246 Reduces Aggressive Behavior in Huntington’s Disease. J Pers Med 2022; 12:jpm12101561. [PMID: 36294700 PMCID: PMC9605366 DOI: 10.3390/jpm12101561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
SRX246, an orally available CNS penetrant vasopressin (VP) V1a receptor antagonist, was studied in Huntington’s disease (HD) patients with irritability and aggressive behavior in the exploratory phase 2 trial, Safety, Tolerability, and Activity of SRX246 in Irritable HD patients (STAIR). This was a dose-escalation study; subjects received final doses of 120 mg BID, 160 mg BID, or placebo. The compound was safe and well tolerated. In this paper, we summarize the results of exploratory analyses of measures of problematic behaviors, including the Cohen–Mansfield Agitation Inventory (CMAI), Aberrant Behavior Checklist (ABC), Problem Behaviors Assessment-short form (PBA-s), Irritability Scale (IS), Clinical Global Impression (CGI), HD Quality of Life (QoL), and Caregiver Burden questionnaires. In addition to these, we asked subjects and caregivers to record answers to short questions about mood, irritability, and aggressive conduct in an eDiary. STAIR was the first rigorously designed study of behavioral endpoints like these in HD. The exploratory analyses showed that SRX246 reduced aggressive acts. Readily observed behaviors should be used as trial endpoints.
Collapse
|
4
|
Bai Y, Niu L, Li S, Le W. Psychopharmacotherapy in Patients with Tics and Other Motor Disorders. NEUROPSYCHOPHARMACOTHERAPY 2022:4271-4301. [DOI: 10.1007/978-3-030-62059-2_257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chem Phys Lipids 2020; 230:104917. [DOI: 10.1016/j.chemphyslip.2020.104917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/31/2022]
|
7
|
Eccles FJR, Craufurd D, Smith A, Davies R, Glenny K, Homberger M, Peeren S, Rogers D, Rose L, Skitt Z, Theed R, Simpson J. A feasibility investigation of mindfulness-based cognitive therapy for people with Huntington's disease. Pilot Feasibility Stud 2020; 6:90. [PMID: 32595978 PMCID: PMC7315515 DOI: 10.1186/s40814-020-00631-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative condition which affects movement, coordination and cognitive functioning. Psychological difficulties are commonly experienced; however, psychological interventions have been little researched with this population. We investigated the feasibility of conducting a randomised controlled trial (RCT) of mindfulness-based cognitive therapy (MBCT) with people with the HD genetic mutation, either pre-manifest (before onset of movement symptoms) or at an early disease stage. Specifically, we evaluated the willingness of participants to be recruited into and complete the intervention; the acceptability of the study measures in relation to completion; the feasibility of offering the standard MBCT course to people with HD; the acceptability of the intervention and the estimated effect sizes. METHODS Participants were recruited from two UK HD centres and took part in an 8-week course of MBCT, with three reunions throughout the following year. Stress, depression, anxiety, and mindfulness were measured pre-, mid-, and post-course, at 3 months and at 1 year. Sleep, quality of life, positive affect and coping were measured pre- and post-course, at 3 months and at 1 year. Descriptive data and approximate effect sizes were calculated. Interviews were conducted post-course and at 1 year and data pertaining to the acceptability of the course were extracted. RESULTS Twelve participants took part in two groups; all were pre-manifest. Levels of depression and anxiety were low pre-course leaving little room for improvement. Changes in stress and in some aspects of mindfulness were medium to large. The qualitative data suggested participants rated the course highly and found it helpful and no changes to the standard course were needed. Recruitment levels were below those anticipated. Most measures were found to be acceptable. CONCLUSIONS Although the course was acceptable to those who took part, given the difficulties in recruiting and the rarity of HD, conducting an RCT of MBCT teaching groups in person does not seem feasible. However, alternative modes of course delivery (e.g. online) would allow the recruitment of people from a greater geographical area and may make an RCT feasible; this revised focus would be suitable for future feasibility studies. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02464293, registered 8 June 2015.
Collapse
Affiliation(s)
- Fiona J. R. Eccles
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - David Craufurd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL UK
| | - Alistair Smith
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - Rhys Davies
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool, L9 7LJ UK
| | - Kristian Glenny
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - Max Homberger
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - Siofra Peeren
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL UK
| | - Dawn Rogers
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL UK
| | - Leona Rose
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - Zara Skitt
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL UK
| | - Rachael Theed
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| | - Jane Simpson
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YT UK
| |
Collapse
|
8
|
Abstract
Huntington disease, a neurodegenerative disease characterized by progressive motor, behavioral, and cognitive decline, is caused by a CAG trinucleotide repeat expansion in the huntingtin gene on chromosome 4. Current treatments target symptom management because there are no disease-modifying therapies at this time. Investigation of RNA-based and DNA-based treatment strategies are emerging and hold promise of possible future disease-modifying therapy.
Collapse
Affiliation(s)
- Christine M Stahl
- NYU Langone Health, Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, 222 East 41st Street, Floor 13, New York, NY 10017, USA.
| | - Andrew Feigin
- NYU Langone Health, Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, 222 East 41st Street, Floor 13, New York, NY 10017, USA
| |
Collapse
|
9
|
Callari A, Miniati M. Clinical and Therapeutic Challenges when Psychiatric Disorders Occur in Neurological Diseases: A Narrative Review. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190411142109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Over the course of the 20th century, neurology and psychiatry diverged and became two separate disciplines. Subsequently, the continuous progress of neurosciences confused their boundaries. However, with ‘the splitting’ and ‘the lumping’ approaches, relevant difficulties remain in targeting clinical and therapeutic goals, when psychiatric signs and symptoms co-occur with neurological diseases.Objective:The study summarize current evidence on psychiatric signs and symptoms comorbid with neurological diseases, with the aim to provide information on diagnostic problems and available therapeutic options.Methods:Finding from searches of publications on ‘PsycInfo’, ‘Medline’, and ‘Science Direct’, from January 1993 to December 2018 (25 years) is summarized in a narrative manner on six main neurological areas: congenital neurological illnesses (n=16), dementias (n=15), basal ganglia diseases (n=30), epilepsy (n=22), strokes/focal brain injuries (n=29), and neurological neoplastic/paraneoplastic diseases (n=15).Results:Clinical phenotypes of psychiatric syndromes are frequently described in neurological studies. Little evidence is provided on the most adequate therapeutic approaches.Conclusion:Psychiatric syndromes in comorbidity with neurological diseases are heterogeneous and severe; evidence-based treatments are scarce. Despite a model supporting an equal approach between psychiatric and neurological syndromes, psychiatric syndromes in neurological diseases have been described, to a relevant degree, as less important, leading to a hierarchical primate of the neurological manifestations, and thus, in our opinion, limiting the systematic studies on psychopharmacological treatments in this area.
Collapse
Affiliation(s)
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Yomtoob J, Yeh C, Bega D. Ancillary Service Utilization and Impact in Huntington's Disease. J Huntingtons Dis 2019; 8:301-310. [PMID: 31177235 DOI: 10.3233/jhd-190349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prior Huntington's disease (HD) studies suggest ancillary services improve motor symptoms, cognition, mood, and quality of life but frequency of use and clinicalcharacteristics are unclear. OBJECTIVE Describe ancillary service utilization in a cohort of individuals with HD and determine which participant characteristics are associated with ancillary service utilization. METHODS Retrospective cross-sectional analysis of Enroll-HD database. Participants were grouped by therapy: physical and/or occupational (PT/OT), psychotherapy and/or counseling (PC), speech and/or swallowing (ST). We performed bivariate comparisons analysis of demographic and disease characteristics between those with/without each therapy and to analyze one-year mean change in assessment scores. RESULTS Of 4751 participants, 1537 (32.35%) utilized therapies (11.82% PT/OT, 5.33% PC, 3.01% ST, 1.98% all three, 10.21% two therapies). PT/OT participants had worse motor and functional scores: mean UHDRS motor score (41.17 vs. 38.05, p = 0.002), median total functional capacity score (TFC) (8.00 vs. 9.00, p < 0.001). PC participants had worse mood but better cognitive and functional scores: median depression score (7.00 vs. 2.00, p < 0.001), median MMSE (28.00 vs. 26.00, p < 0.001), median TFC (10.00 vs. 8.00, p < 0.001). ST participants had more dysarthria, and worse cognitive and functional scores: dysarthria (32.2% vs. 20.1% p < 0.001), mean correct Symbol Digit Modality Test (16.79 vs. 23.27, p < 0.001), median TFC (6.00 vs. 9.00, p < 0.001). Over one year, PC participants' depression scores improved compared to untreated (- 1.24 vs. - 0.11, p = 0.040). ST participants' depression scores worsened (1.14 vs. - 0.23, p = 0.044). Mean change in TFC was not significant for any therapies. CONCLUSIONS Only 32% of Enroll-HD site participants received ancillary services. Use correlated with expected clinical characteristics, though impact of use remains unclear.
Collapse
Affiliation(s)
- Jacob Yomtoob
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chen Yeh
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Danny Bega
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
12
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
13
|
Anderson KE, van Duijn E, Craufurd D, Drazinic C, Edmondson M, Goodman N, van Kammen D, Loy C, Priller J, Goodman LV. Clinical Management of Neuropsychiatric Symptoms of Huntington Disease: Expert-Based Consensus Guidelines on Agitation, Anxiety, Apathy, Psychosis and Sleep Disorders. J Huntingtons Dis 2018; 7:355-366. [PMID: 30040737 PMCID: PMC6294590 DOI: 10.3233/jhd-180293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In clinical practice, several strategies and pharmacological options are available to treat neuropsychiatric symptoms of Huntington disease (HD). However, there is currently insufficient data for evidence-based guidelines on the management of these common symptoms. OBJECTIVE We aimed to develop expert-based recommendations regarding the management of agitation, anxiety, apathy, psychosis, and sleep disorders. METHODS Guideline development was based on a modified Institute of Medicine guideline process that accounted for a lack of evidence base. An international committee of 11 multidisciplinary experts proposed a series of statements regarding the description and management of each symptom. Statement assessment and validation was performed using a web-based survey tool and 84 international HD experts (neurologists and psychiatrists) who assessed the statements and indicated their level of agreement. RESULTS High-level agreement (≥85% experts strongly agreed or agreed) was reached for 107 of the 110 statements that have been incorporated into the expert-based clinical recommendations presented herein. CONCLUSIONS Clinical statements to guide the routine management of agitation, anxiety, apathy, psychosis, and sleep disorders in HD have been developed. Although not specifically tested in the HD population, clinical experience has shown that most of the neuropsychiatric symptoms discussed, when considered in isolation are treatable using pharmacologic and non-pharmacologic strategies developed for use in other populations. However, the management of neuropsychiatric symptoms in HD can be complex because neuropsychiatric symptoms often co-exist and treatment decisions should be adapted to cover all symptoms while limiting polypharmacy.
Collapse
Affiliation(s)
- Karen E. Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University, Washington, DC, USA
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Centre, Leiden; and Mental Health Care Centre Delfland, Delft, The Netherlands
| | - David Craufurd
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Carolyn Drazinic
- Chief Medical Officer of State Mental Health Facilities, Office of Substance Abuse and Mental Health Florida Department of Children and Families, Tallahassee, FL, USA
| | | | | | - Daniel van Kammen
- Consultant for CNS drug development, Professor emeritus University of Pittsburgh, Pittsburgh, PA, USA
| | - Clement Loy
- Westmead Huntington Disease Service, The University of Sydney, and the Garvan Institute of Medical Research, Sydney, Australia
| | - Josef Priller
- Department of Neuropsychiatry, Charité - Universitätsmedizin, Berlin, Germany and University of Edinburgh and UK DRI, Edinburgh, UK
| | | |
Collapse
|
14
|
Abstract
INTRODUCTION Chorea is defined as jerk-like movements that move randomly from one body part to another. It is due to a variety of disorders and although current symptomatic therapy is quite effective there are few etiology- or pathogenesis-targeted therapies. The aim of this review is to summarize our own experience and published evidence in the treatment of chorea. Areas covered: After evaluating current guidelines and clinical practices for chorea of all etiologies, PubMed was searched for the most recent clinical trials and reviews using the term 'chorea' cross referenced with specific drug names. Expert commentary: Inhibitors of presynaptic vesicular monoamine transporter type 2 (VMAT2) that cause striatal dopamine depletion, such as tetrabenazine, deutetrabenazine, and valbenazine, are considered the treatment of choice in patients with chorea. Some clinicians also use dopamine receptor blockers (e.g. antipsychotics) and other drugs, including anti-epileptics and anti-glutamatargics. 'Dopamine stabilizers' such as pridopidine and other experimental drugs are currently being investigated in the treatment of chorea. Deep brain stimulation is usually reserved for patients with disabling chorea despite optimal medical therapy.
Collapse
Affiliation(s)
- H Bashir
- a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology , Baylor College of Medicine , Houston , TX , USA
| | - J Jankovic
- a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
15
|
CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. Int J Mol Sci 2017; 18:ijms18040754. [PMID: 28368337 PMCID: PMC5412339 DOI: 10.3390/ijms18040754] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/14/2023] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative genetic disease characterized by a loss of neurons in the striatum. It is caused by a mutation in the Huntingtin gene (HTT) that codes for the protein huntingtin (HTT). The mutant Huntingtin gene (mHTT) contains extra poly-glutamine (CAG) repeats from which the translated mutant huntingtin proteins (mHTT) undergo inappropriate post-translational modifications, conferring a toxic gain of function, in addition to its non-functional property. In order to curb the production of the mHTT, we have constructed two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associate protein) plasmids, among which one nicks the DNA at untranslated region upstream to the open reading frame (uORF), and the other nicks the DNA at exon1-intron boundary. The primary goal of this study was to apply this plasmid into mesenchymal stem cells (MSCs) extracted from the bone-marrow of YAC128 mice, which carries the transgene for HD. Our results suggest that the disruption of uORF through CRISPR-Cas9 influences the translation of mHTT negatively and, to a lesser extent, disrupts the exon1-intron boundary, which affects the translation of the mHTT. These findings also revealed the pattern of the nucleotide addition or deletion at the site of the DNA-nick in this model.
Collapse
|
16
|
Deb A, Frank S, Testa CM. New symptomatic therapies for Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:199-207. [PMID: 28947118 DOI: 10.1016/b978-0-12-801893-4.00017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington disease (HD), an inherited neurodegenerative disease, results from a CAG repeat expansion creating mutant huntingtin protein and widespread neuronal damage. Motor symptoms such as chorea are often preceded by cognitive and behavioral changes. Tetrabenazine and deutetrabebenazine are the two drugs approved by the Federal Food and Drug Administrationfor HD symptoms, is an effective therapy for chorea. However, there is still a large need for other symptomatic therapies impacting functional issues, including impaired gait, behavioral, and cognitive symptoms. A number of pharmacologic agents are under investigation. Additionally, other mechanisms are being targeted in motor symptom drug development, including phosphodiesterase 10 enzyme inhibition, dopamine modulation, and inhibition of deacetylation. There is perhaps the greatest unmet need in treating nonmotor effects, such as cognition and change in disease course. PBT2, a metal chaperone, and latrepirdine, a mitochondrial stabilizer, are under investigation specifically for the possibility of cognitive benefit. Unfortunately, there is a lack of HD-specific evidence on effective treatments for behavioral and psychiatric symptoms. Further investigation of nonmedication interventions such as physical therapy is necessary. As our understanding of molecular and cellular mechanisms underlying HD broadens, a new set of mechanistic targets will become the focus of HD symptomatic therapies.
Collapse
Affiliation(s)
- Anindita Deb
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Samuel Frank
- Beth Israel Deaconess Medical Center/Harvard Medical School in Boston, MA, United States.
| | - Claudia M Testa
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
17
|
Kavanaugh MS, Noh H, Zhang L. Caregiving Youth Knowledge and Perceptions of Parental End-of-Life Wishes in Huntington's Disease. JOURNAL OF SOCIAL WORK IN END-OF-LIFE & PALLIATIVE CARE 2016; 12:348-365. [PMID: 27938026 DOI: 10.1080/15524256.2016.1252828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Knowledge of patient end-of-life (EOL) wishes and discussions are vital for family caregivers, including children and youth who may be in caregiving roles ("young carers" or "caregiving youth"). However, little is known about caregiving youth awareness and perceptions of EOL issues. This study sought to explore caregiving youth knowledge of EOL wishes and their willingness for EOL discussions. Face-to-face interviews with 40 caregiving youth ages 10-20, who have a parent with Huntington's disease (HD), provided information about their knowledge of the presence of their ill parent's living will (LW) and durable power of attorney for health care (DPAHC), and willingness to talk with the parent about EOL choices and possibility of death. Less than one-half of the participants were aware of the parent's LW or DPAHC. Content analysis revealed themes in reasons to want or not want EOL discussion with the parent: respect for the parent's wishes, caregiving youths' opinion not valued, and avoidance of EOL issues. Themes also included reasons to not want discussion with the parent about possibility of death: protecting the parent, parent in denial, parent not ready, and realization of the terminal outcome. Findings suggest HD patients and their caregiving youth need support for open EOL discussions, and could benefit from educational programs and support groups around EOL issues.
Collapse
Affiliation(s)
- Melinda S Kavanaugh
- a Helen Bader School of Social Welfare , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin , USA
| | - Hyunjin Noh
- b School of Social Work , University of Alabama , Tuscaloosa , Alabama , USA
| | - Lixia Zhang
- a Helen Bader School of Social Welfare , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin , USA
| |
Collapse
|
18
|
Teixeira AL, de Souza LC, Rocha NP, Furr-Stimming E, Lauterbach EC. Revisiting the neuropsychiatry of Huntington's disease. Dement Neuropsychol 2016; 10:261-266. [PMID: 29213467 PMCID: PMC5619263 DOI: 10.1590/s1980-5764-2016dn1004002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease classified under the choreas. Besides motor symptoms, HD is marked by cognitive and behavioral symptoms, impacting patients' functional capacity. The progression of cognitive impairment and neuropsychiatric symptoms occur in parallel with neurodegeneration. The nature of these symptoms is very dynamic, and the major clinical challenges include executive dysfunction, apathy, depression and irritability. Herein, we provide a focused updated review on the cognitive and psychiatric features of HD.
Collapse
Affiliation(s)
- Antonio Lucio Teixeira
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
| | - Natalia Pessoa Rocha
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX
| | - Erin Furr-Stimming
- Department of Neurology, McGovern Medical School,
University of Texas Health Science Center at Houston, Houston, TX
| | - Edward C. Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer
University School of Medicine, Macon, GA
| |
Collapse
|
19
|
Marelli C, Maschat F. The P42 peptide and Peptide-based therapies for Huntington's disease. Orphanet J Rare Dis 2016; 11:24. [PMID: 26984770 PMCID: PMC4794846 DOI: 10.1186/s13023-016-0405-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/08/2016] [Indexed: 11/10/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative hereditary disease clinically characterised by the presence of involuntary movements, behavioural problems and cognitive decline. The disease-onset is usually between 30 and 50 years of age. HD is a rare disorder affecting approximately 1.3 in 10,000 people in the European Union. It is caused by an expanded CAG repeat in the first exon of the Huntingtin (HTT) gene, leading to an abnormal form of the Huntingtin protein (Htt) (polyQHtt), containing N-terminus, enlarged polyglutamine strands of variable length that stick together to form aggregates and nuclear inclusions in the damaged brain cells. Treatments currently used for Huntington's disease are symptomatic and aimed at temporally relieving the symptoms of the disease; although some promising therapies are on study, there is no drug capable of stopping disease progression either in the form of delaying onset or slowing disability progression. The utilization of peptides interacting with polyQ stretches or with Htt protein to prevent misfolding and aggregation of the expanded polyQ protein is a fascinating idea, because of low potential toxicity and ability to target very initial steps in the pathophysiological cascade of the disease, such as aggregation or cleavage process. Indeed, several therapeutic peptides have been developed and were found to significantly slow down the progression of symptoms in experimental models of Huntington's disease. This review is essentially focusing on the latest development concerning peptide strategy. In particular, we focused on a 23aa peptide P42, which is a part of the Htt protein. It is expected to work principally by preventing the abnormal Htt protein from sticking together, thereby preventing pathological consequences of aggregation and improving the symptoms of the disease. In the meantime, as P42 is part of the Htt protein, some therapeutic properties might be linked to the physiological actions of the peptide itself, considered as a functional domain of the Htt protein.
Collapse
Affiliation(s)
- Cecilia Marelli
- Université de Montpellier, Montpellier F-34095, France; Inserm U1198 MMDN, Montpellier F-34095, France; EPHE, Paris F-75014, France, Montpellier, France.,Department of Neurology, Gui de Chauliac University Hospital, Montpellier, France
| | - Florence Maschat
- Université de Montpellier, Montpellier F-34095, France; Inserm U1198 MMDN, Montpellier F-34095, France; EPHE, Paris F-75014, France, Montpellier, France.
| |
Collapse
|
20
|
Abstract
INTRODUCTION Huntington's disease is a rare dominantly-inherited neurodegenerative disease with motor, cognitive and behavioral manifestations. It results from an expanded unstable trinucleotide repeat in the coding region of the huntingtin gene. Treatment is symptomatic, but a poor evidence baseguides selection of therapeutic agents. Non-choreic derangements in voluntary movement contribute to overall motor disability and are poorly addressed by current therapies. Pridopidine is a novel agent in the dopidine class believed to have 'state dependent' effects at dopamine receptors, thus show promise in the treatment of these disorders of voluntary movement. AREAS COVERED This review discusses the pharmacokinetics and pharmacodynamics of pridopidine and reviews clinical trials supporting development of the drug for HD. This information was culled from literature searches for dopidines, pridopidine, and HD experimental therapeutics in PubMed and at http://www.clinicaltrials.org . EXPERT OPINION There is a compelling need to discover new treatments for motor disability in HD, particularly for non-choreic motor symptoms. While pridopidine failed to achieve its primary efficacy outcomes in 2 large trials, reproducible effects on secondary motor outcomes have fueled an ongoing trial studying higher doses and more focused clinical endpoints. This and phase III trials will define define the utility of pridopidine for HD.
Collapse
Affiliation(s)
- Kathleen M Shannon
- a Department of Neurological Sciences , Rush Medical College, Rush University Medical Center , Chicago , IL USA
| |
Collapse
|
21
|
Squitieri F, de Yebenes JG. Profile of pridopidine and its potential in the treatment of Huntington disease: the evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5827-33. [PMID: 26604684 PMCID: PMC4629959 DOI: 10.2147/dddt.s65738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Huntington disease (HD) is a chronic, genetic, neurodegenerative disease for which there is no cure. The main symptoms of HD are abnormal involuntary movements (chorea and dystonia), impaired voluntary movements (ie, incoordination and gait balance), progressive cognitive decline, and psychiatric disturbances. HD is caused by a CAG-repeat expanded mutation in the HTT gene, which encodes the huntingtin protein. The inherited mutation results in the production of an elongated polyQ mutant huntingtin protein (mHtt). The cellular functions of the Htt protein are not yet fully understood, but the functions of its mutant variant are thought to include alteration of gene transcription and energy production, and dysregulation of neurotransmitter metabolism, receptors, and growth factors. The phenylpiperidines pridopidine (4-[3-methanesulfonyl-phenyl]-1-propyl-piperidine; formerly known as ACR16) and OSU6162 ([S]-[-]-3-[3-methane [sulfonyl-phenyl]-1-propyl-piperidine) are members of a new class of pharmacologic agents known as “dopamine stabilizers”. Recent clinical trials have highlighted the potential of pridopidine for symptomatic treatment of patients with HD. More recently, the analysis of HD models (ie, in vitro and in mice) highlighted previously unknown effects of pridopidine (increase in brain-derived neurotrophic factor, reduction in mHtt levels, and σ-1 receptor binding and modulation). These additional functions of pridopidine suggest it might be a neuroprotective and disease-modifying drug. Data from ongoing clinical trials of pridopidine will help define its place in the treatment of HD. This commentary examines the available preclinical and clinical evidence regarding the use of pridopidine in HD.
Collapse
Affiliation(s)
- Ferdinando Squitieri
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo and Mendel Institute of Human Genetics, Rome, Italy
| | | |
Collapse
|
22
|
Mirek E, Filip M, Banaszkiewicz K, Rudzińska M, Szymura J, Pasiut S, Stożek J, Szczudlik A. The effects of physiotherapy with PNF concept on gait and balance of patients with Huntington's disease - pilot study. Neurol Neurochir Pol 2015; 49:354-7. [PMID: 26652868 DOI: 10.1016/j.pjnns.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Huntington's disease (HD) is a neurodegenerative, progressive disorder of the central nervous system which causes significant gait and balance disturbances. This is a pilot study which aims to determine the effects of a physiotherapy programme with use of Proprioceptive Neuromuscular Facilitation (PNF) on gait and balance in HD patients. MATERIAL AND METHODS 30 HD patients aged 21-60 with genetically confirmed diagnosis participated in the study. Participants followed a 3-week-long PNF-based physiotherapy programme. Gait and balance were evaluated twice in each participant: first at baseline and then after the course of physiotherapy. The following methods were used for gait disturbances: Tinetti Gait Assessment Tool, Up and Go Test, Timed Walking Tests for 10m and 20m (TWT10m, TWT20m). Balance was assessed with use of Berg Balance Scale, Pastor Test and Functional Reach Test. RESULTS There was a significant improvement in all measures of balance and gait. CONCLUSION PNF-based physiotherapy is effective and safe in HD patients.
Collapse
Affiliation(s)
- Elżbieta Mirek
- Department of Rehabilitation in Neurology and Psychiatry, University School of Education, Kraków, Poland; Department of Neurology and Neurorehabilitation, John Paul's II Hospital, Kraków, Poland.
| | - Magdalena Filip
- Department of Rehabilitation in Neurology and Psychiatry, University School of Education, Kraków, Poland; Department of Neurology and Neurorehabilitation, John Paul's II Hospital, Kraków, Poland
| | | | - Monika Rudzińska
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | - Jadwiga Szymura
- Department of Rehabilitation in Neurology and Psychiatry, University School of Education, Kraków, Poland
| | - Szymon Pasiut
- Department of Rehabilitation in Neurology and Psychiatry, University School of Education, Kraków, Poland
| | - Joanna Stożek
- Department of Rehabilitation in Neurology and Psychiatry, University School of Education, Kraków, Poland
| | - Andrzej Szczudlik
- Department of Neurology, Jagiellonian University Medical College in Cracow, Kraków, Poland
| |
Collapse
|
23
|
Abstract
Huntington disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive decline, culminating in death. It is caused by an expanded CAG repeat in the huntingtin gene. Even years before symptoms become overt, mutation carriers show subtle but progressive striatal and cerebral white matter atrophy by volumetric MRI. Although there is currently no direct treatment of HD, management options are available for several symptoms. A better understanding of HD pathogenesis, and more sophisticated clinical trials using newer biomarkers, may lead to meaningful treatments. This article reviews the current knowledge of HD pathogenesis and treatment.
Collapse
Affiliation(s)
- Praveen Dayalu
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Roger L Albin
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Neuroscience Research, Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Rosser A, Svendsen CN. Stem cells for cell replacement therapy: a therapeutic strategy for HD? Mov Disord 2015; 29:1446-54. [PMID: 25216372 DOI: 10.1002/mds.26026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
Much interest has been expressed over the last couple of decades in the potential application of stem cells to medicine, both for research and diagnostic tools and as a source of donor cells for therapeutic purposes. Potential therapeutic applications include replacement of cells in many body organs where the capacity for intrinsic repair is limited, including the pancreas, heart, and brain. A key challenge is to generate the relevant donor cell types, and this is particularly challenging in the brain where the number of different neuronal subtypes is so great. Although dopamine neuron replacement in Parkinson's disease has been the focus of most clinical studies, great interest has been shown in this approach for other disorders, including Huntington's disease. Replacing complete neural circuits in the adult brain is clearly challenging, and there are many other complexities with regard to both donor cells and host. This article presents the pros and cons of taking a cell therapy approach in Huntington's disease. It considers the implantation both of cells that are already of the same neural subtype as those lost in the disease process (ie, primary fetal cells derived from the developing striatum) and those derived from stem cells, which require "directing" toward that phenotype.
Collapse
Affiliation(s)
- Anne Rosser
- Cardiff Brain Repair Group, Schools of Medicine and Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | | |
Collapse
|
25
|
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. Nat Rev Dis Primers 2015; 1:15005. [PMID: 27188817 DOI: 10.1038/nrdp.2015.5] [Citation(s) in RCA: 995] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martha Nance
- Struthers Parkinson's Center, Golden Valley, Minneapolis, Minnesota, USA; and Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edward J Wild
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
26
|
Neuroprotective therapeutics from botanicals and phytochemicals against Huntington's disease and related neurodegenerative disorders. J Herb Med 2015. [DOI: 10.1016/j.hermed.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Laprairie RB, Bagher AM, Precious SV, Denovan-Wright EM. Components of the endocannabinoid and dopamine systems are dysregulated in Huntington's disease: analysis of publicly available microarray datasets. Pharmacol Res Perspect 2015; 3:e00104. [PMID: 25692022 PMCID: PMC4317235 DOI: 10.1002/prp2.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/20/2014] [Accepted: 09/28/2014] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington's disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression in the central nervous system (CNS) and in the periphery in different models of HD and human HD tissue. To do this, we conducted a meta-analysis of differential gene expression in the ECS and DAS using publicly available microarray data. The consolidated data were summarized as observed changes in gene expression (OCGE) using a weighted sum for each gene. In addition, consolidated data were compared to previously published studies that were not available in the gene expression omnibus (GEO) database. The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD. The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.
Collapse
Affiliation(s)
- Robert B Laprairie
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | - Amina M Bagher
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | - Sophie V Precious
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | | |
Collapse
|
28
|
Safety, tolerability, and efficacy of PBT2 in Huntington's disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015; 14:39-47. [DOI: 10.1016/s1474-4422(14)70262-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zielonka D, Mielcarek M, Landwehrmeyer GB. Update on Huntington's disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 2014; 21:169-78. [PMID: 25572500 DOI: 10.1016/j.parkreldis.2014.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Huntington's disease (HD) is the most common hereditary neurodegenerative disorder. Despite the fact that both the gene and the mutation causing this monogenetic disorder were identified more than 20 years ago, disease-modifying therapies for HD have not yet been established. REVIEW While intense preclinical research and large cohort studies in HD have laid foundations for tangible improvements in understanding HD and caring for HD patients, identifying targets for therapeutic interventions and developing novel therapeutic modalities (new chemical entities and advanced therapies using DNA and RNA molecules as therapeutic agents) continues to be an ongoing process. The authors review recent achievements in HD research and focus on approaches towards disease-modifying therapies, ranging from huntingtin-lowering strategies to improving huntingtin clearance that may be promoted by posttranslational HTT modifications. CONCLUSION The nature and number of upcoming clinical studies/trials in HD is a reason for hope for HD patients and their families.
Collapse
Affiliation(s)
- Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences, Poland.
| | - Michal Mielcarek
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | |
Collapse
|
30
|
Killoran A, Biglan KM. Current therapeutic options for Huntington's disease: good clinical practice versus evidence-based approaches? Mov Disord 2014; 29:1404-13. [PMID: 25164707 DOI: 10.1002/mds.26014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/18/2014] [Accepted: 08/06/2014] [Indexed: 01/17/2023] Open
Abstract
Therapeutic decision-making in Huntington's disease (HD) is often guided by clinical experience, because of the limited empirical evidence available. The only medication for HD that has met the regulatory hurdle for approval is tetrabenazine, indicated for the treatment of chorea. However, its use has limitations, and in the setting of specific contraindications or comorbidities the treatment of choice for chorea is still the multipurpose antipsychotics. For the management of psychiatric disturbances, selective serotonin reuptake inhibitors (SSRIs) and mood stabilizers are often used, although empirical evidence is lacking. Finally, no known effective treatment is available for cognitive dysfunction in HD. We discuss the limited evidence available and current expert opinion on medical treatment of the dominant motor, psychiatric, and cognitive features of HD. This follows a brief introduction on the general principles of HD management and on evidence-based medicine in relation to clinical practice.
Collapse
Affiliation(s)
- Annie Killoran
- West Virginia University, Morgantown, West Virginia, USA
| | | |
Collapse
|
31
|
Pla P, Orvoen S, Saudou F, David DJ, Humbert S. Mood disorders in Huntington's disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci 2014; 8:135. [PMID: 24795586 PMCID: PMC4005937 DOI: 10.3389/fnbeh.2014.00135] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is best known for its effect on motor control. Mood disturbances such as depression, anxiety, and irritability also have a high prevalence in patients with HD, and often start before the onset of motor symptoms. Various rodent models of HD recapitulate the anxiety/depressive behavior seen in patients. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT). HTT is ubiquitously expressed and is implicated in several cellular functions including control of transcription, vesicular trafficking, ciliogenesis, and mitosis. This review summarizes progress in efforts to understand the cellular and molecular mechanisms underlying behavioral disorders in patients with HD. Dysfunctional HTT affects cellular pathways that are involved in mood disorders or in the response to antidepressants, including BDNF/TrkB and serotonergic signaling. Moreover, HTT affects adult hippocampal neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants and is linked to the control of anxiety. These findings are consistent with the emerging role of wild-type HTT as a crucial component of neuronal development and physiology. Thus, the pathogenic polyQ expansion in HTT could lead to mood disorders not only by the gain of a new toxic function but also by the perturbation of its normal function.
Collapse
Affiliation(s)
- Patrick Pla
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France ; Faculté des Sciences, Université Paris-Sud Orsay, France
| | - Sophie Orvoen
- EA3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Frédéric Saudou
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France
| | - Denis J David
- EA3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Sandrine Humbert
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France
| |
Collapse
|
32
|
Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, Descours I, Coubes C, de Moura AMR, Corlobe A, James S, Roujeau T, Coubes P. Deep brain stimulation for Huntington's disease: long-term results of a prospective open-label study. J Neurosurg 2014; 121:114-22. [PMID: 24702329 DOI: 10.3171/2014.2.jns131722] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED OBJECT.: To date, experience of globus pallidus internus (GPi) deep brain stimulation (DBS) in the treatment of Huntington's disease (HD) has been limited to a small number of case reports. The aim of this study was to analyze long-term motor outcome of a cohort of HD patients treated with GPi DBS. METHODS Seven patients with pharmacologically resistant chorea and functional impairment were included in a prospective open-label study from 2008 to 2011. The main outcome measure was the motor section of the Unified Huntington's Disease Rating Scale. The primary end point was reduction of chorea. RESULTS Patients underwent MRI-guided bilateral GPi implantation. The median duration of follow-up was 3 years. A significant reduction of chorea was observed in all patients, with sustained therapeutic effect; the mean improvement on the chorea subscore was 58.34% at the 12-month follow-up visit (p = 0.018) and 59.8% at the 3-year visit (p = 0.040). Bradykinesia and dystonia showed a nonsignificant trend toward progressive worsening related to disease evolution and partly to DBS. The frequency of stimulation was 130 Hz for all patients. DBS-induced bradykinesia was managed by pulse-width reduction or bipolar settings. Levodopa mildly improved bradykinesia in 4 patients. Regular off-stimulation tests confirmed a persistent therapeutic effect of DBS on chorea. CONCLUSIONS GPi DBS may provide sustained chorea improvement in selected HD patients with pharmacologically resistant chorea, with transient benefit in physical aspects of quality of life before progression of behavioral and cognitive disorders. DBS therapy did not improve dystonia or bradykinesia. Further studies including quality of life measures are needed to evaluate the impact of DBS in the long-term outcome of HD.
Collapse
|
33
|
Abstract
Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kerry P S Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Brusa L, Orlacchio A, Stefani A, Galati S, Pierantozzi M, Iani C, Mercuri NB. Tetrabenazine improves levodopa-induced peak-dose dyskinesias in patients with Parkinson's disease. FUNCTIONAL NEUROLOGY 2013; 28:101-5. [PMID: 24125559 DOI: 10.11138/fneur/2013.28.2.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since levodopa-induced peak dyskinesias (LIDs) may reflect, in part, a disproportionate phasic release of dopamine from synaptic vesicles, we examined the ability of the vesicular depletor tetrabenazine (TBZ) to reduce LIDs in 10 dyskinetic advanced Parkinson's disease (PD) patients. After basal evaluation, the patients received, through a slow titration, oral TBZ twice a day for six weeks (up to 50 mg daily) before being re-assessed after a challenge with levodopa. The primary outcome measure was the change in the Unified Parkinson's Disease Rating Scale (UPDRS) dyskinesia score (items 32 to 34). TBZ was well tolerated. A clear treatment effect on LIDs emerged (up to 45%, p<0.05). In two patients a little worsening of motor performance necessitated an increase of the antiparkinsonian therapy, which did not worsen peak-dose LIDs. The patients experienced a clear benefit in terms of their quality of life. In this open-label pilot study, orally administered TBZ resulted in objective and subjective improvements in LIDs. Larger pharmacological studies are in progress.
Collapse
|
35
|
Loh DH, Kudo T, Truong D, Wu Y, Colwell CS. The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS One 2013; 8:e69993. [PMID: 23936129 PMCID: PMC3728350 DOI: 10.1371/journal.pone.0069993] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Sleep and circadian disruptions are commonly reported by patients with neurodegenerative diseases, suggesting these may be an endophenotype of the disorders. Several mouse models of Huntington’s disease (HD) that recapitulate the disease progression and motor dysfunction of HD also exhibit sleep and circadian rhythm disruption. Of these, the strongest effects are observed in the transgenic models with multiple copies of mutant huntingtin gene. For developing treatments of the human disease, knock-in (KI) models offer advantages of genetic precision of the insertion and control of mutation copy number. Therefore, we assayed locomotor activity and immobility-defined sleep in a new model of HD with an expansion of the KI repeats (Q175). We found evidence for gene dose- and age-dependent circadian disruption in the behavior of the Q175 line. We did not see evidence for loss of cells or disruption of the molecular oscillator in the master pacemaker, the suprachiasmatic nucleus (SCN). The combination of the precise genetic targeting in the Q175 model and the observed sleep and circadian disruptions make it tractable to study the interaction of the underlying pathology of HD and the mechanisms by which the disruptions occur.
Collapse
Affiliation(s)
- Dawn H. Loh
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Danny Truong
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yingfei Wu
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christopher S. Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Edmundson M, Thanh NTK, Song B. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics 2013; 3:573-82. [PMID: 23946823 PMCID: PMC3741606 DOI: 10.7150/thno.5477] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/07/2013] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapies offer great potentials in the treatment for a wide range of diseases and conditions. With so many stem cell replacement therapies going through clinical trials currently, there is a great need to understand the mechanisms behind a successful therapy, and one of the critical points of discovering them is to track stem cell migration, proliferation and differentiation in vivo. To be of most use tracking methods should ideally be non-invasive, high resolution and allow tracking in three dimensions. Magnetic resonance imaging (MRI) is one of the ideal methods, but requires a suitable contrast agent to be loaded to the cells to be tracked, and one of the most wide-spread in stem cell tracking is a group of agents known as magnetic nanoparticles. This review will explore the current use of magnetic nanoparticles in developing and performing stem cell therapies, and will investigate their potential limitations and the future directions magnetic nanoparticle tracking is heading in.
Collapse
|
37
|
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7:114. [PMID: 23847463 PMCID: PMC3701870 DOI: 10.3389/fnins.2013.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Jimenez-Shahed J, Jankovic J. Tetrabenazine for treatment of chorea associated with Huntington's disease and other potential indications. Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.787358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Carter RL, Chan AW. Pluripotent stem cells models for Huntington's disease: prospects and challenges. J Genet Genomics 2012; 39:253-9. [PMID: 22749012 PMCID: PMC4075320 DOI: 10.1016/j.jgg.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
Collapse
Affiliation(s)
- Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Anthony W.S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Rosser AE, Bachoud-Lévi AC. Clinical trials of neural transplantation in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195427 DOI: 10.1016/b978-0-444-59575-1.00016-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical neural transplantation in Huntington's disease has moved forward as a series of small studies, which have provided some preliminary proof of principle that neural transplantation can provide benefit. However, to date, such benefits have not been robust, and there are a number of important issues that need to be addressed. These include defining the optimum donor tissue conditions and host characteristics in order to produce reliable benefit in transplant recipients, and whether, and for how long, immunosuppression is needed. Further clinical studies will be required to address these, and other issues, in order to better understand the processes leading to a properly functioning neural graft. Such studies will pave the way for future clinical trials of renewable donor sources, in particular, stem cell-derived neuronal progenitor grafts.
Collapse
Affiliation(s)
- Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | |
Collapse
|