1
|
Yu RC, Chan L, Chou SY, Lin LF, Hu CJ, Hong CT. Mild behavioural impairment in Parkinson's disease: a systematic review. Age Ageing 2024; 53:afae247. [PMID: 39523602 DOI: 10.1093/ageing/afae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Behavioural symptoms are common manifestations of Parkinson's disease (PD). Early behavioural symptoms characterise mild behavioural impairment (MBI). The prevalence and intensity of MBI in people with PD (PwP) have been studied across various cohorts. However, methodological differences have obscured our understanding of MBI in these individuals. This systematic review examines and synthesises findings from relevant studies, enhancing understanding of the symptoms and implications of MBI in PD. Nine studies from five separate research institutions were identified. The conceptualisation of MBI varied considerably, affecting the reported prevalence rates of MBI in individuals with early-stage PD. Among PwP, MBI was associated higher education and impaired cognition. Affective dysregulation and impulse control disorders were primary contributors to MBI; abnormal perception was least contributor. This systematic review underscores the specific characteristics and incidence of MBI in early-stage PD. Mood and impulse control disorders are primary concerns associated with MBI. Future longitudinal studies are required to clarify the progression of these symptoms and evaluate MBI's potential as an indicator for PD-related dementia or increased dependency.
Collapse
Affiliation(s)
- Ruan-Ching Yu
- Department of Psychiatry, University College London, London, UK
| | - Lung Chan
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yi Chou
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Fong Lin
- School of Gerontology & Long-Term Care, College of Nursing, Taipei Medical University, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Aslam S, Manfredsson F, Stokes A, Shill H. "Advanced" Parkinson's disease: A review. Parkinsonism Relat Disord 2024; 123:106065. [PMID: 38418318 DOI: 10.1016/j.parkreldis.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
There is no consensus driven definition of "advanced" Parkinson's disease (APD) currently. APD has been described in terms of emergence of specific clinical features and clinical milestones of the disease e.g., motor fluctuations, time to increasing falls, emergence of cognitive decline, etc. The pathological burden of disease has been used to characterize various stages of the disease. Imaging markers have been associated with various motor and nonmotor symptoms of advancing disease. In this review, we present an overview of clinical, pathologic, and imaging markers of APD. We also propose a model of disease definition involving longitudinal assessments of these markers as well as quality of life metrics to better understand and predict disease progression in those with Parkinson's disease.
Collapse
Affiliation(s)
- Sana Aslam
- Barrow Neurological Institute, Phoenix, AZ, United States.
| | | | - Ashley Stokes
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Holly Shill
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
3
|
Chen J, Chen B, Zhao D, Feng X, Wang Q, Li Y, Chen J, Bai C, Guo X, He X, Zhang L, Yuan J. Predictors for early-onset psychotic symptoms in patients newly diagnosed with Parkinson's disease without psychosis at baseline: A 5-year cohort study. CNS Neurosci Ther 2024; 30:e14651. [PMID: 38432692 PMCID: PMC10909617 DOI: 10.1111/cns.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
AIMS To investigate the risk factors for early-onset psychosis in Parkinson's disease (PD) in a cohort of patients from the Parkinson's Progression Markers Initiative. METHODS Longitudinal data on motor and non-motor features, dopamine transporter (DAT) imaging, and cerebrospinal fluid (CSF) measurements were collected. The survival probability of psychotic symptoms, potential risk factors for psychosis development over a 5-year follow-up period, and the performance of the prediction model were evaluated. RESULTS Among the 338 newly diagnosed patients with PD, 83 developed psychotic symptoms. Gastrointestinal autonomic dysfunction, presence of probable rapid-eye-movement sleep behavior disorder, and the ratio Aβ42: total-tau could independently predict onset of psychosis in PD (hazard ratio (HR) = 1.157, 95% confidence interval (CI) 1.022-1.309, p = 0.021, HR = 2.596, 95% CI 1.287-5.237, p = 0.008, and HR = 0.842, 95% CI 0.723-0.980, p = 0.027, respectively). The combined model integrating baseline clinical predictors, DAT imaging, and CSF measurements achieved better sensitivity than the clinical predictors alone (area under the curve = 0.770 [95% CI 0.672-0.868] vs. 0.714 [95% CI 0.625-0.802], p = 0.098). CONCLUSION We identified clinical and CSF predictors of early-onset psychosis in patients with PD. Our study provides evidence and implications for prognostic stratification and therapeutic approaches for PD psychosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Baoyu Chen
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Danhua Zhao
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Xiaotong Feng
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Qi Wang
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Yuan Li
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Junyi Chen
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Chaobo Bai
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Xintong Guo
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Xiaoyu He
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| | - Lin Zhang
- Department of Neurology, PF Center of Excellence, UC Davis Medical Center, UC Davis School of MedicineSacramentoCaliforniaUSA
| | - Junliang Yuan
- Department of NeurologyPeking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking UniversityBeijingChina
| |
Collapse
|
4
|
Watanabe H, Uchiyama M, Yokoi K, Mamiya Y, Narita W, Iizuka O, Baba T, Suzuki K, Mori E, Nishio Y. Behavioral and neural correlates of pareidolic illusions in dementia with Lewy bodies. Parkinsonism Relat Disord 2023; 113:105513. [PMID: 37441885 DOI: 10.1016/j.parkreldis.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION Pareidolia, a form of visual illusions phenomenologically similar to complex visual hallucinations, is a phenomenon that is associated with visual hallucinations in dementia with Lewy bodies (DLB). This study aimed to identify commonalities and differences in behavioral and neural correlates between pareidolic illusions and visual hallucinations in DLB. METHODS Forty-three patients with DLB underwent the scene pareidolia test, which evokes and measures pareidolic illusions, and standardized neuropsychological and behavioral assessments. Regional cerebral blood flow (rCBF) was measured by single-photon emission computed tomography. Factor analysis was performed to assess the relationships among pareidolic illusions, cognitive functions, and behavioral symptoms. Partial least squares correlation analysis was used to investigate the relationship between these symptoms and rCBF. RESULTS Factor analysis yielded three behavior factors: the first factor (hallucinations/fluctuations) consisted of pareidolic illusions, visual hallucinations, and fluctuating cognition; the second factor (general cognitive function) consisted of general cognitive function and working memory; and the third factor (visual processing) consisted of visual processing and pareidolic illusions. Partial least squares correlation analysis identified two brain-behavior correlation patterns: (1) rCBF reduction in the frontal and perisylvian/periventricular regions was associated with lower general cognitive function and lower visual processing; and (2) rCBF reduction in the bilateral occipitotemporal cortex was associated with more severe hallucinations/fluctuations and lower visual processing. CONCLUSIONS At the behavioral level, pareidolic illusions are associated with visual hallucinations, fluctuating cognition, and visual processing in DLB. At the neural level, pareidolic illusions may arise from the synergistic effects of global neuropathological changes and occipitotemporal cortical dysfunctions.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Uchiyama
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Speech, Language and Hearing Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kayoko Yokoi
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuyuki Mamiya
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Occupational Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Wataru Narita
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Osamu Iizuka
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Baba
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Japan
| | - Yoshiyuki Nishio
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan; Department of Psychiatry and Neurology, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan.
| |
Collapse
|
5
|
Gibson LL, Grinberg LT, Ffytche D, Leite REP, Rodriguez RD, Ferretti-Rebustini REL, Pasqualucci CA, Nitrini R, Jacob-Filho W, Aarsland D, Suemoto CK. Neuropathological correlates of neuropsychiatric symptoms in dementia. Alzheimers Dement 2023; 19:1372-1382. [PMID: 36150075 PMCID: PMC10033459 DOI: 10.1002/alz.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Neuropsychiatric symptoms (NPS) are common in Lewy body disease (LBD), but their etiology is poorly understood. METHODS In a population-based post mortem study neuropathological data was collected for Lewy body (LB) neuropathology, neurofibrillary tangles (NFT), amyloid beta burden, TDP-43, lacunar infarcts, cerebral amyloid angiopathy (CAA), and hyaline atherosclerosis. Post mortem interviews collected systematic information regarding NPS and cognitive status. A total of 1038 cases were included: no pathology (NP; n = 761), Alzheimer's disease (AD; n = 189), LBD (n = 60), and AD+LBD (n = 28). RESULTS Hallucinations were associated with higher LB Braak stages, while higher NFT Braak staging was associated with depression, agitation, and greater number of symptoms in the Neuropsychiatric Inventory. Cases with dual AD+LBD pathology had the highest risk of hallucinations, agitation, apathy, and total symptoms but a multiplicative interaction between these pathologies was not significant. DISCUSSION LB and AD pathology contribute differentially to NPS likely with an additive process contributing to the increased burden of NPS.
Collapse
Affiliation(s)
- Lucy L Gibson
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology and Pathology, University of California San Francisco, San Francisco, California, USA
- University of São Paulo Medical School, São Paulo, Brazil
| | - Dominic Ffytche
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | | | | | | | | | - Dag Aarsland
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Disease, Stavanger University Hospital, Stavanger, Norway
| | | |
Collapse
|
6
|
Li DN, Lian TH, Zhang WJ, Zhang YN, Guo P, Guan HY, Li JH, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Potential roles of oxidative distress on neurodegeneration in Parkinson's disease with neuropsychiatric symptoms. Front Aging Neurosci 2022; 14:875059. [PMID: 36589540 PMCID: PMC9797725 DOI: 10.3389/fnagi.2022.875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neuropsychiatric symptoms (NPSs) belong to a category of non-motor symptoms of Parkinson's disease (PD), which seriously compromise the quality of life and prognosis of PD. This study focused on the correlations between NPSs, free radicals, neuroinflammatory factors, and neuropathological proteins in cerebrospinal fluid (CSF) in patients with PD, aiming to provide insights into the potential mechanisms and therapeutic target for PD with NPSs (PD-NPSs). Methods In total, 129 patients with PD were enrolled and assessed by the Neuropsychiatric Symptoms Inventory (NPI); they were divided into the PD-NPSs group (75 patients) and PD with no NPSs (PD-nNPSs) group (54 patients). The levels of hydrogen peroxide (H2O2) and nitric oxide (NO), and hydroxyl radical (·OH), anti-oxidative enzyme, neuroinflammatory factors, and neuropathological proteins in CSF from patients with PD were measured. The levels of the above variables were compared between PD-NPSs and PD-nNPSs groups, and correlation analyses among the above variables were conducted. Results (1) The levels of H2O2 and NO in CSF from the PD-NPSs group were significantly elevated compared with the PD-nNPSs group (p = 0.001), and NPI score positively correlated with the levels of H2O2 and NO (r = 0.283, P = 0.001; r = 0.231, P = 0.008). Reversely, total superoxide dismutase (tSOD) activity in CSF from the PD-NPSs group was significantly reduced compared with the PD-nNPSs group (p = 0.011), and negatively correlated with NPI score (r = -0.185, p = 0.036). (2) The tumor necrosis factor (TNF)-α level in CSF from the PD-NPSs group was significantly decreased compared with the PD-nNPSs group (p = 0.002) and negatively correlated with NPI score (r = -0.211, p = 0.016). (3) The total tau (T-tau) level in CSF from the PD-NPSs group was significantly higher than in the PD-nNPSs group (p = 0.014) and positively correlated with the NPI score (r = 0.167, p = 0.060). (4) The levels of H2O2 and NO positively correlated with the T-tau level in CSF from the PD-NPSs group (r = 0.183, p = 0.039; r = 0.251, P = 0.004), and the levels of TNF-α and T-tau showed a negative correlation (r = -0.163, p = 0.067). Conclusion Oxidative distress characterized by the elevations of H2O2 and NO levels may closely correlate with the neurodegeneration in brain regions related to PD-NPSs. Thus, therapeutic antioxidants may become an important target for PD-NPSs therapy.
Collapse
Affiliation(s)
- Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory on Parkinson's Disease, Beijing, China,*Correspondence: Wei Zhang
| |
Collapse
|
7
|
Zhang S, Ma Y. Emerging role of psychosis in Parkinson's disease: From clinical relevance to molecular mechanisms. World J Psychiatry 2022; 12:1127-1140. [PMID: 36186499 PMCID: PMC9521528 DOI: 10.5498/wjp.v12.i9.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Psychosis is one of the common psychiatric presentations in the natural course of PD. PD psychosis is an important non-motor symptom, which is strongly correlated with a poor prognosis. Increasing attention is being given to PD psychosis. In this opinion review, we summarized and analyzed the identification, screening, epidemiology, mechanisms, risk factors, and therapeutic approaches of PD psychosis based on the current clinical evidence. PD psychosis tends to have a negative effect on patients' quality of life and increases the burden of family caregiving. Screening and identification in the early stage of disease is crucial for establishing tailored therapeutic strategies and predicting the long-term outcome. Development of PD psychosis is believed to involve a combination of exogenous and endogenous mechanisms including imbalance of neurotransmitters, structural and network changes, genetic profiles, cognitive impairment, and antiparkinsonian medications. The therapeutic strategy for PD psychosis includes reducing or ceasing the use of dopaminergic drug, antipsychotics, cholinesterase inhibitors, and non-pharmacological interventions. Ongoing clinical trials are expected to provide new insights for tailoring therapy for PD psychosis. Future research based on novel biomarkers and genetic factors may help inform individualized therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
8
|
Sinclair L, Brenton J, Liu AKL, MacLachlan R, Gentleman SM, Love S. Possible Contribution of Altered Cholinergic Activity in the Visual Cortex in Visual Hallucinations in Parkinson's Disease. J Neuropsychiatry Clin Neurosci 2022; 34:168-176. [PMID: 34961331 DOI: 10.1176/appi.neuropsych.21040103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Up to one-third of patients with Parkinson's disease (PD) experience visual hallucinations (VHs). Lewy bodies are sparse in the visual cortices and seem unlikely to explain the hallucinations. Some neuroimaging studies have found that perfusion is reduced in the occipital lobe in individuals with VHs. Recent work has suggested that decreased cholinergic input may directly lead to the decreased perfusion. The investigators hypothesized that individuals with PD and VHs would have biochemical evidence of reduced microvascular perfusion and reduced cholinergic activity in areas of the brain that process visual images. METHODS Tissue from Brodmann's area (BA) 18 and BA 19 was obtained from a well-characterized cohort matched for age, gender, and postmortem interval in 69 individuals (PD without VHs, N=11; PD without dementia plus VHs N=10, N=10; PD with dementia plus VHs, N=16; and control subjects, N=32). Von Willebrand factor, vascular endothelial growth factor A, and myelin-associated glycoprotein:proteolipid protein-1 (MAG:PLP1) ratio-a measure of tissue oxygenation relative to metabolic demand, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), choline acetyltransferase, and α-synuclein-were quantified by enzyme-linked immunosorbent assay. The primary outcome was the MAG:PLP1 ratio. RESULTS There was no biochemical evidence of chronic hypoperfusion in PD, although microvessel density was decreased in ventral BA 18 and BA 19. There was no between-group difference in BChE in either dorsal BA 18 or BA 19. AChE concentration was reduced in individuals with PD compared with control subjects in dorsal and ventral BA 18 and dorsal BA 19, and it was increased in ventral BA 19. These changes were most marked in the PD plus VHs group. CONCLUSIONS These results suggest that changes in cholinergic activity rather than chronic hypoperfusion may underlie VHs in PD.
Collapse
Affiliation(s)
- Lindsey Sinclair
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Jake Brenton
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Alan King Lun Liu
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Rob MacLachlan
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Steve M Gentleman
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| | - Seth Love
- Dementia Research Group, University of Bristol, United Kingdom (Sinclair, Brenton, MacLachlan, Love); Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom (Liu); and Neuropathology Unit, Department of Brain Sciences, Imperial College London (Liu, Gentleman)
| |
Collapse
|
9
|
Devanand DP, Lee S, Huey ED, Goldberg TE. Associations Between Neuropsychiatric Symptoms and Neuropathological Diagnoses of Alzheimer Disease and Related Dementias. JAMA Psychiatry 2022; 79:359-367. [PMID: 35171235 PMCID: PMC8851371 DOI: 10.1001/jamapsychiatry.2021.4363] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Understanding associations of Alzheimer disease (AD) and related dementias (ADRD) pathologies with common neuropsychiatric symptoms (NPS) may have implications for diagnosis and management. OBJECTIVE To evaluate ADRD neuropathological diagnoses and NPS without consideration of clinical diagnosis. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study evaluated 1808 brains from 39 sites in the US National Alzheimer Coordinating Center v. 10 collection for participants among whom the Neuropsychiatric Inventory Questionnaire (NPIQ) was administered annually. Brain autopsy diagnoses of AD, Lewy body disease (LBD), cerebral amyloid angiopathy, frontotemporal lobar degeneration, cerebrovascular disease, hippocampal sclerosis, and no known pathology were examined. Autopsy data collected from January 2012 to January 2018 were deidentified and compiled into the publicly available v. 10 database. Data were analyzed from February 2021 to August 2021. MAIN OUTCOMES AND MEASURES The primary outcome was NPIQ domain score, if present at any time point, and mean NPIQ domain score during follow-up was secondary. Associations of ADRD diagnoses with 12 NPIQ symptom domains were examined in regression analyses, correcting for multiple comparisons. RESULTS The study sample of 1808 adults had a mean (SD) age of 80.0 (11.0) years, and 987 participants (54.6%) were male. Apathy was the most prevalent NPS, reaching 80% (203 of 254 individuals) in those with hippocampal sclerosis. Cerebrovascular disease showed few NPS associations. Frontotemporal lobar degeneration was associated with increased apathy, increased disinhibition, and decreased psychosis and agitation compared with AD. Hippocampal sclerosis was associated with increased apathy (odds ratio, 2.60; 95% CI; 1.86-3.66, false discovery rate controlled P < .001) and disinhibition (odds ratio, 2.15; 95% CI, 1.63-2.84; false discovery rate controlled P < .001). In multiple regression analyses that included concomitant neuropathologies, the main findings remained. More severe pathology was consistently associated with increased NPS (eg, LBD was associated with an increase in hallucinations from brain stem [β, 0.23; 95% CI, 0.07-0.76; P = .02] to limbic [β, 1.69; 95% CI, 1.27-2.27; P < .001] to neocortical [β, 4.49; 95% CI, 3.27-6.16; P < .001] pathology). Hallucinations were more common in participants with AD and LBD (168 of 534 [31.5%]) compared with those with AD without LBD (152 of 704 [21.6%]) and those with LBD without AD (23 of 119 [19.6%]). CONCLUSIONS AND RELEVANCE In this cohort study of 1808 brains from the US National Alzheimer Coordinating Center, patients with LBD and AD showed a higher prevalence of hallucinations compared with those with LBD without AD. Neuropsychiatric symptom criteria of apathy and disinhibition in behavioral variant frontotemporal lobar degeneration were supported in this study. In hippocampal sclerosis, the findings of increased apathy and disinhibition merit further investigation. Severity of neuropathology was associated with NPS severity, indicating that NPS may reflect underlying ADRD pathology and highlighting the importance of diagnosing and treating NPS.
Collapse
Affiliation(s)
- Davangere P. Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
| | - Seonjoo Lee
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
- Division of Mental Health Data Science, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
| | - Edward D. Huey
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
| | - Terry E. Goldberg
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York
| |
Collapse
|
10
|
Scarioni M, Gami-Patel P, Peeters CFW, de Koning F, Seelaar H, Mol MO, van Swieten JC, Rozemuller AJM, Hoozemans JJM, Pijnenburg YAL, Dijkstra AA. Psychiatric symptoms of frontotemporal dementia and subcortical (co-)pathology burden: new insights. Brain 2022; 146:307-320. [PMID: 35136978 PMCID: PMC9825544 DOI: 10.1093/brain/awac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 01/12/2023] Open
Abstract
Three subtypes of distinct pathological proteins accumulate throughout multiple brain regions and shape the heterogeneous clinical presentation of frontotemporal lobar degeneration (FTLD). Besides the main pathological subtypes, co-occurring pathologies are common in FTLD brain donors. The objective of this study was to investigate how the location and burden of (co-)pathology correlate to early psychiatric and behavioural symptoms of FTLD. Eighty-seven brain donors from The Netherlands Brain Bank cohort (2008-2017) diagnosed with FTLD were included: 46 FTLD-TAR DNA-binding protein 43 (FTLD-TDP), 34 FTLD-tau, and seven FTLD-fused-in-sarcoma (FTLD-FUS). Post-mortem brain tissue was dissected into 20 standard regions and stained for phosphorylated TDP-43, phosphorylated tau, FUS, amyloid-β, and α-synuclein. The burden of each pathological protein in each brain region was assessed with a semi-quantitative score. Clinical records were reviewed for early psychiatric and behavioural symptoms. Whole-brain clinico-pathological partial correlations were calculated (local false discovery rate threshold = 0.01). Elaborating on the results, we validated one finding using a quantitative assessment of TDP-43 pathology in the granular layer of the hippocampus in FTLD-TDP brain donors with (n = 15) and without (n = 15) hallucinations. In subcortical regions, the presence of psychiatric symptoms showed positive correlations with increased hippocampal pathology burden: hallucinations with TDP-43 in the granular layer (R = 0.33), mania with TDP-43 in CA1 (R = 0.35), depression with TDP-43 in CA3 and with parahippocampal tau (R = 0.30 and R = 0.23), and delusions with CA3 tau (R = 0.26) and subicular amyloid-β (R = 0.25). Behavioural disinhibition showed positive correlations with tau burden in the thalamus (R = 0.29) and with both TDP-43 and amyloid-β burden in the subthalamus (R = 0.23 and R = 0.24). In the brainstem, the presence of α-synuclein co-pathology in the substantia nigra correlated with disinhibition (R = 0.24), tau pathology in the substantia nigra correlated with depression (R = 0.25) and in the locus coeruleus with both depression and perseverative/compulsive behaviour (R = 0.26 and R = 0.32). The quantitative assessment of TDP-43 in the granular layer validated the higher burden of TDP-43 pathology in brain donors with hallucinations compared to those without hallucinations (P = 0.007). Our results show that psychiatric symptoms of FTLD are linked to subcortical pathology burden in the hippocampus, and hallucinations are linked to a higher burden of TDP-43 in the granular layer. Co-occurring non-FTLD pathologies in subcortical regions could contribute to configuring the clinical phenotype of FTLD.
Collapse
Affiliation(s)
- Marta Scarioni
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Priya Gami-Patel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Division of Mathematical and Statistical Methods—Biometris, Wageningen University and Research, Wageningen, The Netherlands,Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Florianne de Koning
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Merel O Mol
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anke A Dijkstra
- Correspondence to: Anke A. Dijkstra De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands E-mail:
| |
Collapse
|
11
|
Gibson LL, Pollak TA, Heslegrave A, Hye A, Batzu L, Rota S, Trivedi D, Nicholson TR, Ffytche D, Zetterberg H, Chaudhuri KR, Aarsland D. Plasma Neurofilament Light and p-tau181 and Risk of Psychosis in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1527-1538. [PMID: 35466956 DOI: 10.3233/jpd-223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms are common and important to people with Parkinson's disease (PD), but their etiology is poorly understood. Plasma neurofilament light (NfL) and p-tau181 are biomarkers of neuro-axonal degeneration and tau pathology respectively, which have yet to be explored in association with the affective and psychotic symptoms in PD. OBJECTIVE To investigate the relationship between plasma NfL and p-tau181 with the affective and psychotic symptoms in PD. METHODS We assessed the baseline concentration of plasma NfL and p-tau181 in a cohort of 108 patients with PD and 38 healthy controls. A subgroup of patients (n = 63) were assessed annually with clinical measures for up to 7 years. Psychotic symptoms were assessed using the Non-Motor Symptom Scale and affective symptoms were measured in the Hospital Anxiety and Depression Scale. RESULTS Baseline plasma NfL was a significant predictor of psychotic symptoms longitudinally across the study adjusted for age, Hoehn and Yahr stage, duration of follow up, duration of disease, baseline levodopa and dopamine agonist medication, and baseline cognition: (OR 8.15 [95% CI 1.40-47.4], p = 0.020). There was no association between NfL concentration and the cumulative prevalence of affective symptoms. Plasma p-tau181 concentration was not associated with psychotic or affective symptoms. CONCLUSION These findings suggest psychotic symptoms are associated with greater neurodegeneration in PD. Further studies are needed to explore NfL as a potential biomarker for psychosis in PD.
Collapse
Affiliation(s)
- Lucy L Gibson
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas A Pollak
- Neuropsychiatry Research and Education Group, Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Abdul Hye
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, London, UK
| | - Silvia Rota
- Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, London, UK
| | - Dhaval Trivedi
- Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, London, UK
| | - Timothy R Nicholson
- Neuropsychiatry Research and Education Group, Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dominic Ffytche
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Salhgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, London, UK
| | - Dag Aarsland
- Old Age Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Disease, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
12
|
Diederich NJ. [Causes of visual hallucinations in Parkinson's disease]. DER NERVENARZT 2022; 93:392-401. [PMID: 34342675 PMCID: PMC9010390 DOI: 10.1007/s00115-021-01165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Visual hallucinations (VH) have mainly been considered as late symptoms of Parkinson's disease (PD); however, minor forms of VH also occur in early stages of the disease. Initially dopaminergic overstimulation was discussed as the cause and later on VH have been considered as an early red flag of dementia in PD. OBJECTIVE The present study analyzed whether the pathophysiological concept of VH has been enlarged in recent years. MATERIAL AND METHODS Clinical, pharmacological, neuropathological as well as functional magnetic resonance imaging studies dealing with VH were reviewed. A systematic classification in monomodal and multimodal models of VH is proposed. The applicability to various forms of VH and various triggering situations is critically examined. RESULTS Reduction of the visual information input, erroneous visual processing, attention deficits, and dysfunctional connectivity between various cerebral networks have been shown. There is partial overlapping with the Lhermitte syndrome and the Charles Bonnet syndrome. No model is able to fully explain all VH variants. Not all VH have the same pathogenesis and the same poor prognosis. CONCLUSION The chain of causes underlying VH is complex and can vary from patient to patient. So far the therapeutic applications are largely unexplored; however, there is preliminary evidence that beside adjustment of the medication, improvement of visual acuity, active involvement of the partner, and possibly, individually adaptable coping strategies could be successfully implemented.
Collapse
Affiliation(s)
- Nico J. Diederich
- Abteilung für Neurologie, Centre Hospitalier de Luxembourg, 4, rue Barblé, 1210 Luxemburg-Stadt, Luxemburg
| |
Collapse
|
13
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
14
|
Powell A, Ireland C, Lewis SJG. Visual Hallucinations and the Role of Medications in Parkinson's Disease: Triggers, Pathophysiology, and Management. J Neuropsychiatry Clin Neurosci 2021; 32:334-343. [PMID: 32374649 DOI: 10.1176/appi.neuropsych.19110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visual hallucinations, which are part of the syndrome of Parkinson's disease (PD) psychosis, affect patients' quality of life and increase the likelihood of residential aged-care placement. The association between visual hallucinations and dopaminergic and other medications that are necessary for the symptomatic management of motor and other symptoms of PD is a common clinical dilemma. While dopaminergic medications have long been associated with PD psychosis, a clear causal link has not been established, and other neurotransmitter systems, particularly noradrenaline, serotonin, and acetylcholine, are implicated and important. A diverse range of demographic and disease-related risk factors, some being modifiable, highlight the complexity of potential underlying pathophysiological processes but also broaden practical options for prevention and treatment that can be multifaceted and individualized. The investigators reviewed the clinical features and epidemiology of visual hallucinations and PD, explored the pathological evidence for dysfunction of multiple neurotransmitter systems that may be relevant to these phenomena, and addressed the potential of medications commonly used in PD to either trigger or treat these symptoms.
Collapse
Affiliation(s)
- Alice Powell
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| | - Catriona Ireland
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
15
|
Pezzoli S, Sánchez-Valle R, Solanes A, Kempton MJ, Bandmann O, Shin JI, Cagnin A, Goldman JG, Merkitch D, Firbank MJ, Taylor JP, Pagonabarraga J, Kulisevsky J, Blanc F, Verdolini N, Venneri A, Radua J. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson's disease and dementia with Lewy bodies: Voxel-based morphometry and neuropsychological meta-analysis. Neurosci Biobehav Rev 2021; 128:367-382. [PMID: 34171324 DOI: 10.1016/j.neubiorev.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
Visual hallucinations (VH) are common in Parkinson's disease and dementia with Lewy bodies, two forms of Lewy body disease (LBD), but the neural substrates and mechanisms involved are still unclear. We conducted meta-analyses of voxel-based morphometry (VBM) and neuropsychological studies investigating the neuroanatomical and cognitive correlates of VH in LBD. For VBM (12 studies), we used Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), including statistical parametric maps for 50% of the studies. For neuropsychology (35 studies), we used MetaNSUE to consider non-statistically significant unreported effects. VH were associated with smaller grey matter volume in occipital, frontal, occipitotemporal, and parietal areas (peak Hedges' g -0.34 to -0.49). In patients with Parkinson's disease without dementia, VH were associated with lower verbal immediate memory performance (Hedges' g -0.52). Both results survived correction for multiple comparisons. Abnormalities in these brain regions might reflect dysfunctions in brain networks sustaining visuoperceptive, attention, and executive abilities, with the latter also being at the basis of poor immediate memory performance.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Oliver Bandmann
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jennifer G Goldman
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Departments of Physical Medicine and Neurology, Chicago, IL, USA
| | - Doug Merkitch
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Frederic Blanc
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France; Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Norma Verdolini
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, London, UK
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Pezzoli S, Cagnin A, Bussè C, Zorzi G, Fragiacomo F, Bandmann O, Venneri A. Cognitive correlates and baseline predictors of future development of visual hallucinations in dementia with Lewy bodies. Cortex 2021; 142:74-83. [PMID: 34217015 DOI: 10.1016/j.cortex.2021.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Visual hallucinations (VH) are common in dementia with Lewy bodies (DLB), and are among the core symptoms for its clinical diagnosis. VH have been associated with cognitive alterations, although research findings in this area are still limited. The present study aimed at investigating the cognitive correlates of VH in DLB, and the baseline neuropsychological features predicting the future development of VH. A cross sectional study compared the cognitive profile of 18 DLB patients with VH with that of 32 DLB without VH. A longitudinal study involved 34 DLB patients with no VH at baseline, among whom 17 developed VH and 17 remained without VH at follow-up. Logistic regression analyses were carried out to investigate what baseline cognitive variables independently predicted the development of VH at follow-up. DLB patients with VH had worse performance on the copy of the Rey complex figure, assessing visual construction/perception, than those without VH in the cross-sectional study (p = .001). Significant impairments in attention and visual memory delayed recall were also present. Baseline performance on the immediate prose memory was the only significant predictor of VH development in the longitudinal study (p = .03). DLB patients are more at risk of developing VH if presenting more severe immediate verbal memory impairment, and this might be related to a combination of (a) DMN-related dysfunctions, (b) impairment in medial temporal lobe-related functions, and (c) frontal abilities including long-term encoding of information and working memory. Differences between hallucinating and non-hallucinating patients in visual construction/perception, typical of DLB symptomatology, may be essential for VH to emerge in individuals with an at risk cognitive profile.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK
| | | | - Cinzia Bussè
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giovanni Zorzi
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | - Oliver Bandmann
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, UK.
| |
Collapse
|
17
|
Abstract
Introduction: Hallucinations in Parkinson's disease are common, can complicate medication management and significantly impact upon the quality of life of patients and their carers.Areas covered: This review aims to examine current evidence for the management of hallucinations in Parkinson's disease.Expert opinion: Treatment of hallucinations in Parkinson's disease should be both individualized and multifaceted. Screening, education, medication review and the avoidance of common triggers are important. For well-formed visual hallucinations, acetylcholinesterase inhibitors are recommended first-line. Refractory or severe symptoms may require the cautious use of atypical antipsychotics. Antidepressants may be beneficial in the appropriate setting. Unfortunately, current therapies for hallucinations offer only limited benefits and future research efforts are desperately required to improve the management of these challenging symptoms.
Collapse
Affiliation(s)
- Alice Powell
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia.,Department of Geriatric Medicine, Prince of Wales Hospital, Randwick, Australia
| | - Elie Matar
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia
| |
Collapse
|
18
|
Coerver KA, Subramanian PS. Visual hallucinations in psychiatric, neurologic, and ophthalmologic disease. Curr Opin Ophthalmol 2020; 31:475-482. [PMID: 33009079 DOI: 10.1097/icu.0000000000000701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Recent studies have increased our understanding of the biochemical and structural bases of visual hallucinations in patients with a variety of underlying causes. RECENT FINDINGS Visual hallucinations may be related to disruption of functional connectivity networks, with underlying biochemical dysfunction such as decreased in cholinergic activity. Structural abnormalities in primary and higher order visual processing areas also have been found in patients with visual hallucinations. The occurrence of visual hallucinations after vision loss, the Charles Bonnet syndrome, may have more functional similarity to psychiatric and neurodegenerative causes than previously suspected despite retained insight into the unreal nature of the phenomena. SUMMARY Visual hallucinations are common, and patients may not report them if specific inquiries are not made. Presence or absence of hallucinations may be of diagnostic and therapeutic importance, especially in patients with neurodegenerative conditions that have overlapping features. Treatment of visual hallucinations remains challenging and must be tailored to each patient based on the underlying cause and comorbid conditions.
Collapse
Affiliation(s)
| | - Prem S Subramanian
- Department of Ophthalmology
- Department of Neurology
- Department of Neurosurgery, University of Colorado School of Medicine
- Sue Anschutz-Rodgers UCHealth Eye Center, Aurora, Colorado, USA
| |
Collapse
|
19
|
O'Brien J, Taylor JP, Ballard C, Barker RA, Bradley C, Burns A, Collerton D, Dave S, Dudley R, Francis P, Gibbons A, Harris K, Lawrence V, Leroi I, McKeith I, Michaelides M, Naik C, O'Callaghan C, Olsen K, Onofrj M, Pinto R, Russell G, Swann P, Thomas A, Urwyler P, Weil RS, Ffytche D. Visual hallucinations in neurological and ophthalmological disease: pathophysiology and management. J Neurol Neurosurg Psychiatry 2020; 91:512-519. [PMID: 32213570 PMCID: PMC7231441 DOI: 10.1136/jnnp-2019-322702] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Visual hallucinations are common in older people and are especially associated with ophthalmological and neurological disorders, including dementia and Parkinson's disease. Uncertainties remain whether there is a single underlying mechanism for visual hallucinations or they have different disease-dependent causes. However, irrespective of mechanism, visual hallucinations are difficult to treat. The National Institute for Health Research (NIHR) funded a research programme to investigate visual hallucinations in the key and high burden areas of eye disease, dementia and Parkinson's disease, culminating in a workshop to develop a unified framework for their clinical management. Here we summarise the evidence base, current practice and consensus guidelines that emerged from the workshop.Irrespective of clinical condition, case ascertainment strategies are required to overcome reporting stigma. Once hallucinations are identified, physical, cognitive and ophthalmological health should be reviewed, with education and self-help techniques provided. Not all hallucinations require intervention but for those that are clinically significant, current evidence supports pharmacological modification of cholinergic, GABAergic, serotonergic or dopaminergic systems, or reduction of cortical excitability. A broad treatment perspective is needed, including carer support. Despite their frequency and clinical significance, there is a paucity of randomised, placebo-controlled clinical trial evidence where the primary outcome is an improvement in visual hallucinations. Key areas for future research include the development of valid and reliable assessment tools for use in mechanistic studies and clinical trials, transdiagnostic studies of shared and distinct mechanisms and when and how to treat visual hallucinations.
Collapse
Affiliation(s)
- John O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - John Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Clive Ballard
- University of Exeter Medical School, Medical School Building, St Luke's Campus, Exeter, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, WT-MRC Cambridge Stem Cell Institute, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Clare Bradley
- Health Psychology Research Ltd, Egham, Surrey, UK.,Health Psychology Research Unit, Royal Holloway University of London, Egham, Surrey, UK
| | - Alistair Burns
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester, United Kingdom
| | - Daniel Collerton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sonali Dave
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Rob Dudley
- Gateshead Early Intervention in Psychosis Service, Cumbria, Northumberland, Tyne & Wear NHS Foundation Trust, Gateshead, UK
| | - Paul Francis
- University of Exeter Medical School, Medical School Building, St Luke's Campus, Exeter, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Andrea Gibbons
- Health Psychology Research Unit, Royal Holloway University of London, Egham, Surrey, UK
| | - Kate Harris
- Department of Clinical Neurosciences, WT-MRC Cambridge Stem Cell Institute, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Vanessa Lawrence
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Iracema Leroi
- Global Brain Health Institute, Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ian McKeith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Chaitali Naik
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Claire O'Callaghan
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Onofrj
- Clinical Neurologica, Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università G.D'Annunzio, Chieti-Pescara, Italy
| | - Rebecca Pinto
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Gregor Russell
- Bradford District Care NHS Foundation Trust, Lynfield Mount Hospital, Bradford, UK
| | - Peter Swann
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Prabitha Urwyler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.,University Neurorehabilitation Unit, Department of Neurology, University Hospital Inselspital, Bern, Switzerland
| | | | - Dominic Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| |
Collapse
|
20
|
Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. HANDBOOK OF CLINICAL NEUROLOGY 2020; 165:83-121. [PMID: 31727232 DOI: 10.1016/b978-0-444-64012-3.00007-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder with a complex pathophysiology characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Persons with PD experience several motoric and neuropsychiatric symptoms. Neuropsychiatric features of PD include depression, anxiety, psychosis, impulse control disorders, and apathy. In this chapter, we will utilize the National Institutes of Mental Health Research Domain Criteria (RDoC) to frame and integrate observations from two prevailing disease constructions: neurotransmitter anomalies and circuit physiology. When there is available evidence, we posit how unified translational observations may have clinical relevance and postulate importance outside of PD. Finally, we review the limited evidence available for pharmacologic management of these symptoms.
Collapse
|
21
|
Sinclair LI, Kumar A, Darreh-Shori T, Love S. Visual hallucinations in Alzheimer's disease do not seem to be associated with chronic hypoperfusion of to visual processing areas V2 and V3 but may be associated with reduced cholinergic input to these areas. ALZHEIMERS RESEARCH & THERAPY 2019; 11:80. [PMID: 31511061 PMCID: PMC6740037 DOI: 10.1186/s13195-019-0519-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Background Up to 20% of patients with AD experience hallucinations. The pathological substrate is not known. Visual hallucinations (VH) are more common in dementia with Lewy bodies (DLB). In autopsy studies, up to 60% of patients with AD have concomitant Lewy body pathology. Decreased perfusion of the occipital lobe has been implicated in DLB patients with VH, and post-mortem studies point to both decreased cholinergic activity and reduced oxygenation of the occipital cortex in DLB. Methods We used biochemical methods to assess microvessel density (level of von Willebrand factor, a marker of endothelial cell content), ante-mortem oxygenation (vascular endothelial growth factor, a marker of tissue hypoxia; myelin-associated glycoprotein to proteolipid protein-1 ratio, a measure of tissue oxygenation relative to metabolic demand), cholinergic innervation (acetylcholinesterase and choline acetyltransferase), butyrylcholinesterase and insoluble α-synuclein content in the BA18 and BA19 occipital cortex obtained post-mortem from 23 AD patients who had experienced visual hallucinations, 19 AD patients without hallucinations, 19 DLB patients, and 36 controls. The cohorts were matched for age, gender and post-mortem interval. Results There was no evidence of reduced microvessel density, hypoperfusion or reduction in ChAT activity in AD with visual hallucinations. Acetylcholinesterase activity was reduced in both BA18 and BA19, in all 3 dementia groups, and the concentration was also reduced in BA19 in the DLB and AD without visual hallucinations groups. Insoluble α-synuclein was raised in the DLB group in both areas but not in AD either with or without visual hallucinations. Conclusions Our results suggest that visual hallucinations in AD are associated with cholinergic denervation rather than chronic hypoperfusion or α-synuclein accumulation in visual processing areas of the occipital cortex. Electronic supplementary material The online version of this article (10.1186/s13195-019-0519-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsey Isla Sinclair
- Population Health Sciences, Oakfield House, University of Bristol, Clifton, Bristol, BS8 2BN, UK. .,Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - Amit Kumar
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Seth Love
- Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
22
|
Hansen D, Ling H, Lashley T, Holton JL, Warner TT. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol Appl Neurobiol 2019; 45:635-654. [PMID: 30977926 DOI: 10.1111/nan.12554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-β imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-β pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
23
|
Current treatment of behavioral and cognitive symptoms of Parkinson's disease. Parkinsonism Relat Disord 2019; 59:65-73. [PMID: 30852149 DOI: 10.1016/j.parkreldis.2019.02.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Cognitive and behavioral symptoms are common in Parkinson's disease, may occur even in the prodromal stages of the disease, worsen with disease progression, and surpass motor symptoms as the major factors affecting patient quality of life and caregiver burden. The symptoms may be caused by the disease pathology or they may represent adverse effects of treatment, or both etiological factors may contribute. Although many of these symptoms are related to dopaminergic dysfunction or dopaminergic medication, other neurotransmitters are involved as well. Behavioral symptoms including impulse control disorders, apathy, psychosis, as well as mild cognitive impairment and dementia are reviewed with a special focus on current treatment approaches.
Collapse
|
24
|
Rothenberg KG, Rajaram R. Advances in Management of Psychosis in Neurodegenerative Diseases. Curr Treat Options Neurol 2019; 21:3. [PMID: 30673880 DOI: 10.1007/s11940-019-0545-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF THE REVIEW Psychosis is broadly defined as a disengagement from reality. It describes syndromes that impair both thought content and thought process. Psychosis negatively impacts an individual's quality of life, in addition to the families caring for them. Psychosis with different types of hallucinations and delusions occurs in the context of delirium. Neuropsychiatric symptoms (NPS) are almost universal in the course of common neurodegenerative disorders (NDD) like Alzheimer's disease (AD) or Parkinson's disease (PD). In this paper, the authors took an effort to characterize AD and PD psychosis with a special focus on the most diagnostically reliable features. Effectiveness and limitations of pharmacological interventions are discussed. RECENT FINDINGS Consensus diagnostic criteria have evolved for psychosis secondary to AD as well as psychosis in PD. Psychotropic medications can be effective in the treatment of NPS in NDD; however, clinicians must be mindful of the side effects. There is a consensus on benefit of initiating any acetylcholinesterase inhibitor (ACHI: donepezil, rivastigmine, and galantamine) as a first line of treatment for psychosis in AD, as it may reduce and/or avoid the need for the use antipsychotics. Pimavanserin, a selective-serotonin inverse agonist that preferentially targets 5-HT2A receptors, while avoiding activity at dopamine and other receptors commonly targeted by antipsychotics had recently been approved by FDA to treat hallucinations and delusions in PD. Quetiapine is widely prescribed for the treatment of psychosis in different NDD, but the data remains equivocal. Psychosis with different types of hallucinations and delusions may occur in the context of delirium and is almost universal as a neuropsychiatric symptom in the course of PD and AD. Currently, pimavanserin remains the only pharmacologic agent approved for treatment of psychosis in PD. In cases of other NPS in other than Parkinson's diseases, atypical antipsychotics are commonly used off-label. More research is greatly needed to advance this field and address NPS especially psychosis in geriatric population.
Collapse
Affiliation(s)
- Kasia Gustaw Rothenberg
- Cleveland Clinic Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| | - Ryan Rajaram
- Department of Psychiatry, Yale School of Medicine, 300 George St., Suite 901, New Haven, CT, 06511, USA
| |
Collapse
|
25
|
Lim EW, Aarsland D, Ffytche D, Taddei RN, van Wamelen DJ, Wan YM, Tan EK, Ray Chaudhuri K. Amyloid-β and Parkinson's disease. J Neurol 2018; 266:2605-2619. [PMID: 30377818 DOI: 10.1007/s00415-018-9100-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the second commonest neurodegenerative disorder in the world with a rising prevalence. The pathophysiology is multifactorial but aggregation of misfolded α-synuclein is considered to be a key underpinning mechanism. Amyloid-β (Aβ) and tau deposition are also comorbid associations and especially Aβ deposition is associated with cognitive decline in PD. Some existing evidence suggests that low cerebrospinal fluid (CSF) Aβ42 is predictive of future cognitive impairment in PD. Recent studies also show that CSF Aβ is associated with the postural instability and gait difficulties (PIGD) or the newly proposed cholinergic subtype of PD, a possible risk factor for cognitive decline in PD. The glial-lymphatic system, responsible for convective solute clearance driven by active fluid transport through aquaporin-4 water channels, may be implicated in brain amyloid deposition. A better understanding of the role of this system and more specifically the role of Aβ in PD symptomatology, could introduce new treatment and repurposing drug-based strategies. For instance, apomorphine infusion has been shown to promote the degradation of Aβ in rodent models. This is further supported in a post-mortem study in PD patients although clinical implications are unclear. In this review, we address the clinical implication of cerebral Aβ deposition in PD and elaborate on its metabolism, its role in cognition and motor function/gait, and finally assess the potential effect of apomorphine on Aβ deposition in PD.
Collapse
Affiliation(s)
- Ee Wei Lim
- Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, SE5 9RS, UK. .,Department of Neurology, National Neuroscience Institute (Singapore General Hospital Campus), 20 College Road, Singapore, 169856, Singapore. .,Duke-National University of Singapore Graduate Medical School, Singapore, 169857, Singapore.
| | - Dag Aarsland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience at King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Dominic Ffytche
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience at King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Raquel Natalia Taddei
- Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Daniel J van Wamelen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience at King's College London, De Crespigny Park, London, SE5 8AF, UK.,Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, SE5 9RS, UK.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Reinier Postlaan 4, Postbus 9101, 6500HB, Nijmegen, The Netherlands
| | - Yi-Min Wan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience at King's College London, De Crespigny Park, London, SE5 8AF, UK.,Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, SE5 9RS, UK.,Department of Psychiatry, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Singapore, 609606, Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute (Singapore General Hospital Campus), 20 College Road, Singapore, 169856, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, 169857, Singapore
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience at King's College London, De Crespigny Park, London, SE5 8AF, UK.,Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | | |
Collapse
|
26
|
Mueller C, Rajkumar AP, Wan YM, Velayudhan L, Ffytche D, Chaudhuri KR, Aarsland D. Assessment and Management of Neuropsychiatric Symptoms in Parkinson's Disease. CNS Drugs 2018; 32:621-635. [PMID: 30027401 DOI: 10.1007/s40263-018-0540-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms are highly prevalent in Parkinson's disease and associated with decreased quality of life and adverse health outcomes. In this review, the assessment and management of common neuropsychiatric symptoms are discussed: depression, anxiety, psychosis, cognitive impairment, dementia and apathy. Validated assessment scales are now available for the majority of symptoms. Balancing dopaminergic therapy plays an important role in their management as increasing doses of dopaminergic agents might address depression and anxiety related to 'off' phases, non-motor fluctuations and apathy, while dose reduction might alleviate psychotic symptoms. More targeted treatment is possible through medications utilising different pathways. Although efficacy profiles of individual agents require further exploration, antidepressants as a drug class have shown utility in depression and anxiety in Parkinson's disease. Psychological therapies, especially cognitive behavioural approaches, are effective. Pimavanserin allows the treatment of psychosis in Parkinson's disease without directly affecting the dopaminergic and cholinergic system. The cholinergic system is currently the only target in Parkinson's disease dementia, and antagonists of this system, as are many psychotropic drugs, need to be used with caution. Management of apathy largely relies on non-pharmacological strategies adapted from dementia care, with antidepressants being ineffective and the role of stimulant therapy needing further evaluation.
Collapse
Affiliation(s)
- Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Anto P Rajkumar
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Yi Min Wan
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- Ng Teng Fong General Hospital, Singapore, Singapore
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Dominic Ffytche
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kallol Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
27
|
EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease: Comparison with dementia with Lewy bodies. Neurobiol Aging 2018; 67:75-83. [DOI: 10.1016/j.neurobiolaging.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 01/29/2023]
|
28
|
Kim J, Fischer CE, Schweizer TA, Munoz DG. Gender and Pathology-Specific Effect of Apolipoprotein E Genotype on Psychosis in Alzheimer's Disease. Curr Alzheimer Res 2018; 14:834-840. [PMID: 28219318 DOI: 10.2174/1567205014666170220150021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Symptoms of psychosis is one of the common clinical manifestations of Alzheimer's disease (AD). However, the pathophysiology behind psychosis is unknown. OBJECTIVE The aim of the present study was to explore the relationship between Apolipoprotein E (APOE) genotype, Lewy body pathology, and psychosis in AD. METHOD The data was obtained from the National Alzheimer's disease Coordinating Centre (NACC), using the Uniform Data Set and the Neuropathology Data Set. Subjects with frequent neuritic plaque on CERAD, and Braak Stage of V or VI, corresponding to high probability of AD based on the NIA-AA Regan criteria were included in the analysis. RESULTS Subjects with two copies of ε4 alleles were significantly more likely to develop psychosis, both delusions and/or hallucinations, during the course of their illness. This association was gender-specific, only reaching significance in females. Our findings further showed that presence of two copies of ε4 allele was positively associated with the formation of Lewy bodies. Only in females with Lewy bodies was the effect of two copies of ε4 allele significant, reaching an odd ratio of 4.5. CONCLUSION The APOE ε4 allele has a female-specific effect in inducing psychosis in AD through the formation of Lewy bodies.
Collapse
Affiliation(s)
- Julia Kim
- Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Corinne E Fischer
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tom A Schweizer
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David G Munoz
- Department of Laboratory Medicine, Room 2-097 CC Wing, St. Michael's Hospital, 30 Bond Street. Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
29
|
Schneider RB, Iourinets J, Richard IH. Parkinson's disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 2017; 7:365-376. [DOI: 10.2217/nmt-2017-0028] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by motor and nonmotor symptoms. Psychosis is a common feature of Parkinson's disease. Parkinson's disease psychosis (PDP) encompasses minor phenomena (illusions, passage hallucinations and presence hallucinations), visual and nonvisual hallucinations and delusions. PDP is associated with reduced function and quality of life. The initial management approach should focus on identification and treatment of any contributory medical factors, reduction or discontinuation of medications with potential to induce or worsen psychosis, nonpharmacological strategies and consideration of acetylcholinesterase inhibitor treatment in the setting of dementia. Pimavanserin, quetiapine and clozapine may all be considered for use in PDP. In this review, we discuss the presentation, diagnosis and management of PDP.
Collapse
Affiliation(s)
- Ruth B Schneider
- Department of Neurology, University of Rochester School of Medicine & Dentistry, 265 Crittenden Blvd, Box MIND, Rochester, NY 14642, USA
| | - Julia Iourinets
- Department of Neurology, University of Rochester School of Medicine & Dentistry, 919 Westfall Rd, Bldg C, Rochester, NY 14618, USA
| | - Irene H Richard
- Department of Neurology, University of Rochester School of Medicine & Dentistry, 919 Westfall Rd, Bldg C, Rochester, NY 14618, USA
| |
Collapse
|
30
|
Jellinger KA. Neuropathology of Nonmotor Symptoms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:13-62. [PMID: 28802920 DOI: 10.1016/bs.irn.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), a multiorgan neurodegenerative disorder associated with α-synuclein deposits throughout the nervous system and many organs, is clinically characterized by motor and nonmotor features, many of the latter antedating motor dysfunctions by 20 or more years. The causes of the nonmotor manifestations such as olfactory, autonomic, sensory, neuropsychiatric, visuospatial, sleep, and other disorders are unlikely to be related to single lesions. They are mediated by the involvement of both dopaminergic and nondopaminergic systems, and diverse structures outside the nigrostriatal system that is mainly responsible for the motor features of PD. The nonmotor alterations appear in early/prodromal stages of the disease and its further progression, suggesting a topographical and chronological spread of the lesions. This lends further support for the notion that PD is a multiorgan proteinopathy, although the exact relationship between presymptomatic and later developing nonmotor features of PD and neuropathology awaits further elucidation.
Collapse
|
31
|
Chang A, Fox SH. Psychosis in Parkinson's Disease: Epidemiology, Pathophysiology, and Management. Drugs 2017; 76:1093-118. [PMID: 27312429 DOI: 10.1007/s40265-016-0600-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychotic symptoms are common in Parkinson's disease (PD) and are associated with poorer quality of life and increased caregiver burden. PD psychosis is correlated with several factors, such as more advanced disease, cognitive impairment, depression, and sleep disorders. The underlying causes of psychosis in PD thus involve a complex interplay between exogenous (e.g., drugs, intercurrent illnesses) and endogenous (e.g., PD disease pathology) factors. Current theories of the pathophysiology of PD psychosis have come from several neuropathological and neuroimaging studies that implicate pathways involving visual processing and executive function, including temporo-limbic structures and neocortical gray matter with altered neurotransmitter functioning (e.g., dopamine, serotonin, and acetylcholine). Treatment of PD psychosis requires a step-wise process, including initial careful investigation of treatable triggering conditions and a comprehensive evaluation with adjustment of PD medications and/or initiation of specific antipsychotic therapies. Clozapine remains the only recommended drug for the treatment of PD psychosis; however, because of regular blood monitoring, quetiapine is usually first-line therapy, although less efficacious. Emerging studies have focused on agents involving other neurotransmitters, including the serotonin 5-HT2A receptor inverse agonist pimavanserin, cholinesterase inhibitors, and antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Anna Chang
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Susan H Fox
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
32
|
Ffytche DH, Pereira JB, Ballard C, Chaudhuri KR, Weintraub D, Aarsland D. Risk factors for early psychosis in PD: insights from the Parkinson's Progression Markers Initiative. J Neurol Neurosurg Psychiatry 2017; 88:325-331. [PMID: 28315846 PMCID: PMC5362125 DOI: 10.1136/jnnp-2016-314832] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Parkinson's Disease (PD) psychosis refers to the spectrum of illusions, formed hallucinations and delusions that occur in PD. Visual hallucinations and illusions are thought to be caused by specific cognitive and higher visual function deficits and patients who develop such symptoms early in the disease course have greater rates of cognitive decline and progression to dementia. To date, no studies have investigated whether such deficits are found prior to the onset of PD psychosis. METHOD Here we compare baseline cognitive, biomarker (structural imaging and cerebrospinal fluid) and other PD psychosis risk factor data in patients who go on to develop illusions or hallucinations within 3-4 years of follow-up in the Parkinson's Progression Markers Initiative cohort of newly diagnosed PD. RESULTS Of n=423 patients with PD, n=115 (27%) reported predominantly illusions with the median time of onset at 19.5 months follow-up. At study entry these patients had reduced CSF amyloid Aß1-42, lower olfaction scores, higher depression scores and increased REM sleep behaviour disorder symptoms compared to patients without early onset PD psychosis but no differences in cognitive, higher visual or structural imaging measures. A subset of patients with early onset formed hallucinations (n=21) had reduced higher visual function at baseline, cortical thinning in parietal, occipital and frontal cortex and reduced hippocampal volume. CONCLUSIONS The findings suggest early onset illusions and formed hallucinations are linked to amyloid pathology in PD and point to a difference in the underlying pathophysiological mechanism of illusions and formed hallucinations, with implications for their respective links to future cognitive decline.
Collapse
Affiliation(s)
- Dominic H Ffytche
- KCL-PARCOG Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Clive Ballard
- KCL-PARCOG Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Exeter Medical School, University of Exeter, Exeter, Devon, UK
| | - K Ray Chaudhuri
- KCL-PARCOG Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Daniel Weintraub
- KCL-PARCOG Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centres (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Centre, Philadelphia, Pennsylvania, USA
| | - Dag Aarsland
- KCL-PARCOG Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre of Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
33
|
Ffytche DH, Creese B, Politis M, Chaudhuri KR, Weintraub D, Ballard C, Aarsland D. The psychosis spectrum in Parkinson disease. Nat Rev Neurol 2017; 13:81-95. [PMID: 28106066 PMCID: PMC5656278 DOI: 10.1038/nrneurol.2016.200] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In 2007, the clinical and research profile of illusions, hallucinations, delusions and related symptoms in Parkinson disease (PD) was raised with the publication of a consensus definition of PD psychosis. Symptoms that were previously deemed benign and clinically insignificant were incorporated into a continuum of severity, leading to the rapid expansion of literature focusing on clinical aspects, mechanisms and treatment. Here, we review this literature and the evolving view of PD psychosis. Key topics include the prospective risk of dementia in individuals with PD psychosis, and the causal and modifying effects of PD medication. We discuss recent developments, including recognition of an increase in the prevalence of psychosis with disease duration, addition of new visual symptoms to the psychosis continuum, and identification of frontal executive, visual perceptual and memory dysfunction at different disease stages. In addition, we highlight novel risk factors - for example, autonomic dysfunction - that have emerged from prospective studies, structural MRI evidence of frontal, parietal, occipital and hippocampal involvement, and approval of pimavanserin for the treatment of PD psychosis. The accumulating evidence raises novel questions and directions for future research to explore the clinical management and biomarker potential of PD psychosis.
Collapse
Affiliation(s)
- Dominic H Ffytche
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology &Neuroscience, King's College London, UK. De Crespigny Park, London SE5 8AF, UK
| | - Byron Creese
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- University of Exeter Medical School, University of Exeter, EX1 2LU, UK
| | - Marios Politis
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - K Ray Chaudhuri
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, National Parkinson Foundation Centre of Excellence, King's College London/Kings College Hospital, 5 Cutcombe Road, London SE5 9RT, UK
| | - Daniel Weintraub
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania 3615 Chestnut Street, #330, Philadelphia, Pennsylvania 19104, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centres (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Centre 3900 Woodland Avenue, Philadelphia, Pennsylvania 19104, USA
| | - Clive Ballard
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- University of Exeter Medical School, University of Exeter, EX1 2LU, UK
| | - Dag Aarsland
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology &Neuroscience, King's College London, UK. De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
34
|
ffytche DH, Aarsland D. Psychosis in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:585-622. [DOI: 10.1016/bs.irn.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Ehgoetz Martens KA, Lewis SJG. Pathology of behavior in PD: What is known and what is not? J Neurol Sci 2016; 374:9-16. [PMID: 28089250 DOI: 10.1016/j.jns.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Abnormal behavior in Parkinson's disease (PD) stems from a complex orchestration of impaired neural networks that result from PD-related neurodegeneration across multiple levels. Typically, cellular and tissue abnormalities generate neurochemical changes and disrupt specific regions of the brain, in turn creating impaired neural circuits and dysfunctional global networks. The objective of this chapter is to provide an overview of the array of pathological changes that have been linked to different behavioral symptoms of PD such as depression, anxiety, apathy, fatigue, impulse control disorders, psychosis, sleep disorders and dementia.
Collapse
Affiliation(s)
- Kaylena A Ehgoetz Martens
- Parkinson Disease Research Clinic, Brain and Mind Centre, University of Sydney, 100 Mallet Street, Camperdown, 2050, NSW, Australia.
| | - Simon J G Lewis
- Parkinson Disease Research Clinic, Brain and Mind Centre, University of Sydney, 100 Mallet Street, Camperdown, 2050, NSW, Australia
| |
Collapse
|
36
|
Fischer CE, Qian W, Schweizer TA, Millikin CP, Ismail Z, Smith EE, Lix LM, Shelton P, Munoz DG. Lewy Bodies, Vascular Risk Factors, and Subcortical Arteriosclerotic Leukoencephalopathy, but not Alzheimer Pathology, are Associated with Development of Psychosis in Alzheimer's Disease. J Alzheimers Dis 2016; 50:283-95. [PMID: 26682680 DOI: 10.3233/jad-150606] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The neuropathological correlates of psychosis in Alzheimer's disease (AD) is unclear, with some studies reporting a correlation between psychosis and increased AD pathology while others have found no association. OBJECTIVE To determine the demographic, clinical, and neuropathological features associated with psychotic symptoms in clinically attributed and neuropathologically proven AD. METHOD We separately reviewed two overlapping groups of clinically diagnosed (cAD) AD patients with neuropathology data and neuropathologically definite (npAD) cases (regardless of clinical diagnosis) from the NACC database, and explored the relationships between psychosis and clinical variables, neuropathologic correlates, and vascular risk factors. Delusions and hallucinations, defined according to the NPI-Q, were analyzed separately. RESULTS 1,073 subjects in the database fulfilled our criteria (890 cAD and 728 npAD patients). 34% of cAD and 37% of npAD had psychotic symptoms during their illness. Hallucinations were associated with greater cognitive and functional impairments on the MMSE and CDR, while delusional patients showed less impairment on CDR, consistent across cAD and npAD groups. Burden of AD pathology appears to relate to presence of psychotic symptoms in the clinical AD group, but this result is not confirmed in the neuropathologically confirmed group suggesting the findings in the clinical group were due to misdiagnosis of AD. Lewy body pathology, subcortical arteriosclerotic leukoencephalopathy, and vascular risk factors, including a history of hypertension and diabetes, were associated with the development of psychosis. METHOD Vascular and Lewy body pathologies and vascular risk factors are important modifiers of the risk of psychosis in AD.
Collapse
Affiliation(s)
- Corinne E Fischer
- Keenan Research Centre for Biomedical Research, The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine, Department of Psychiatry, University of Toronto, Canada
| | - Winnie Qian
- Keenan Research Centre for Biomedical Research, The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Research, The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Colleen P Millikin
- Department of Clinical Healthy Psychology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zahinoor Ismail
- Departments of Psychiatry and Neurology, Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Eric E Smith
- Departments of Psychiatry and Neurology, Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lisa M Lix
- Department of Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Shelton
- Division of Neurology, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Research, The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Pathology, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Abstract
Parkinson's disease psychosis (PDP) is theoretically a serotonin-dopamine imbalance syndrome due to disruption of the normal balance between the serotonergic and dopaminergic neurotransmitter systems in key brain circuits.
Collapse
|
38
|
Mechanism of action of pimavanserin in Parkinson's disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr 2016; 21:271-5. [PMID: 27503570 DOI: 10.1017/s1092852916000407] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pimavanserin, a novel agent approved for the treatment of Parkinson's disease psychosis, has potent actions as an antagonist/inverse agonist at serotonin 5HT2A receptors and less potent antagonist/inverse agonist actions at 5HT2C receptors.
Collapse
|
39
|
Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer's disease. Sci Rep 2016; 6:20858. [PMID: 26868671 PMCID: PMC4751434 DOI: 10.1038/srep20858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023] Open
Abstract
Psychosis is common in Alzheimer’s disease (AD). However, studies on neuropathology in vascular etiology contributing to psychosis in AD is lacking to date. The aim of this study was to investigate neuropathological vascular related changes in Alzheimer’s disease with psychosis. Data of patients with AD from the National Alzheimer’s Coordinating Center between 2005 to September 2013 was accessed and reviewed. Presence of psychosis was determined based on Neuropsychiatric Inventory Questionnaire taken from the last visit within one year prior to death, and patients were divided into psychosis positive and negative group. Comparison of clinical details and neuropathological vascular changes between the groups was performed using Wilcoxon rank sum test and Chi-square/ Fisher’s exact test. Significant variables were further included in a multivariate logistic model. Overall, 145 patients was included. Of these, 50 patients were psychosis positive. Presence of one or more cortical microinfarcts and moderate to severe arteriosclerosis was found to be positively associated with psychosis. Our results suggest vascular changes correlate with psychosis in Alzheimer’s disease.
Collapse
|
40
|
Gasca-Salas C, Clavero P, García-García D, Obeso JA, Rodríguez-Oroz MC. Significance of visual hallucinations and cerebral hypometabolism in the risk of dementia in Parkinson's disease patients with mild cognitive impairment. Hum Brain Mapp 2015; 37:968-77. [PMID: 26663702 DOI: 10.1002/hbm.23080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Mild cognitive impairment (MCI) and visual hallucinations (VH) are common co-morbidities and risk factors for dementia in Parkinson's disease (PD). The relative value of each of them in the progression to dementia is unknown. We investigated cognitive impairment and cerebral hypometabolism in PD-MCI patients with VH (VH-positive) and without (VH-negative). METHODS Twenty-one PD-MCI patients (12 VH-negative, nine VH-positive) and 19 controls were studied using a comprehensive neuropsychological battery and [18F]-Fluorodeoxyglucose positron emission tomography (FDG-PET). The neuropsychological assessment was repeated after 30 months. Regional FDG uptake was analyzed using statistical parametric mapping. RESULTS VH-positive patients had lower FDG uptake bilaterally in the occipital, and parietal cortex, right temporal lobe and in the left cingulum compared with VH-negative patients. The two groups showed no significant differences in clinical characteristics and cognitive status at baseline. After 30 months of follow-up, three (25%) and four (50%) of the VH-negative and VH-positive patients, respectively, had progressed to dementia. CONCLUSION Even in the absence of significant cognitive differences, PD-MCI patients with VH exhibit more severe cerebral hypometabolism and had a higher rate of progression to dementia than VH-negative patients, supporting the importance of VH and cerebral hypometabolism in establishing the risk of dementia in PD-MCI.
Collapse
Affiliation(s)
- Carmen Gasca-Salas
- Department of Neurology and Neurosurgery, Neurosciences Area, CIMA, Clínica Universidad De Navarra, University of Navarra, Pamplona, Spain.,Centro De Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pedro Clavero
- Department of Neurology and Neurosurgery, Neurosciences Area, CIMA, Clínica Universidad De Navarra, University of Navarra, Pamplona, Spain
| | - David García-García
- Department of Neurology and Neurosurgery, Neurosciences Area, CIMA, Clínica Universidad De Navarra, University of Navarra, Pamplona, Spain.,Centro De Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, University Hospital Donostia; Neuroscience Unit BioDonostia Research Institute, San Sebastian; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - José A Obeso
- Department of Neurology and Neurosurgery, Neurosciences Area, CIMA, Clínica Universidad De Navarra, University of Navarra, Pamplona, Spain.,Centro De Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María C Rodríguez-Oroz
- Department of Neurology and Neurosurgery, Neurosciences Area, CIMA, Clínica Universidad De Navarra, University of Navarra, Pamplona, Spain.,Centro De Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, University Hospital Donostia; Neuroscience Unit BioDonostia Research Institute, San Sebastian; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|