1
|
Li XY, Lai H, Li X, Xu F, Song Y, Wang Z, Li Q, Lin R, Xu Z, Wang C. Genetic profiles of multiple system atrophy revealed by exome sequencing, long-read sequencing and spinocerebellar ataxia repeat expansion analysis. Eur J Neurol 2024; 31:e16441. [PMID: 39152783 DOI: 10.1111/ene.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder clinically characterized by combinations of autonomic failure, parkinsonism, cerebellar ataxia and pyramidal signs. Although a few genetic factors have been reported to contribute to the disease, its mutational profiles have not been systemically studied. METHODS To address the genetic profiles of clinically diagnosed MSA patients, exome sequencing and triplet repeat detection was conducted in 205 MSA patients, including one familial case. The pathogenicity of variants was determined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS In the familial patient, a novel heterozygous COQ2 pathogenic variant (p.Ala351Thr) was identified in the MSA pedigree. In the sporadic patients, 29 pathogenic variants were revealed in 21 genes, and the PARK7 p.Ala104Thr variant was significantly associated with MSA (p = 0.0018). Moreover, burden tests demonstrated that the pathogenic variants were enriched in cerebellar ataxia-related genes in patients. Furthermore, repeat expansion analyses revealed that two patients carried the pathogenic CAG repeat expansion in the CACNA1A gene (SCA6), one patient carried the (ACAGG)exp/(ACAGG)exp expansion in RFC1 and one carried the GAA-pure expansion in FGF14 gene. CONCLUSION In conclusion, a novel COQ2 pathogenic variant was identified in a familial MSA patient, and repeat expansions in CACNA1A, RFC1 and FGF14 gene were detected in four sporadic patients. Moreover, a PARK7 variant and the burden of pathogenic variants in cerebellar ataxia-related genes were associated with MSA.
Collapse
Affiliation(s)
- Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Xian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Qibin Li
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, Guangdong, China
| | - Ruichai Lin
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, Guangdong, China
| | - Zhiheng Xu
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| |
Collapse
|
2
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
El Otmani H, Daghi M, Tahiri Jouti N, Lesage S. An overview of the worldwide distribution of LRRK2 mutations in Parkinson's disease. Neurodegener Dis Manag 2023; 13:335-350. [PMID: 38305913 DOI: 10.2217/nmt-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with significant genetic influence. The LRRK2 gene is a major genetic contributor, particularly the Gly2019Ser mutation. This focused review investigates the global distribution of LRRK2 mutations, with emphasis on Gly2019Ser and other pathogenic variants. Prevalence rates of Gly2019Ser are highest in North Africa and the Ashkenazi-Jewish population, indicating a potential common ancestor and founder effect. Other LRRK2 mutations, including Asn1437His, Arg1441Gly/Cys/His, Tyr1699Cys and Ile2020Thr, exhibit varying global prevalences. Understanding these distributions enhances our knowledge of PD genetics and aids personalized medicine. Further research is crucial to unravel clinical implications and develop targeted therapies for LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Hicham El Otmani
- Laboratory of Medical Genetics & Molecular Pathology. Faculty of Medicine and Pharmacy, Hassan II University, 20250, Casablanca, Morocco
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
- Department of Neurology. Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| | - Mohamed Daghi
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability. Faculty of Medicine & Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Nadia Tahiri Jouti
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Suzanne Lesage
- Sorbonne University, Institut du Cerveau-Paris Brain Institute, ICM, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| |
Collapse
|
4
|
Tang Y, Wei L, Wu Z, Xu P, Mo M. Parkinson's disease in a patient with GBA and LRRK2 covariants after acute hypoxic insult: a case report. BMC Neurol 2023; 23:226. [PMID: 37301871 PMCID: PMC10257258 DOI: 10.1186/s12883-023-03269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 (LRRK2) genes are associated with the risk of sporadic Parkinson's disease (PD). As an environmental factor, hypoxic insults may impair dopamine neurons in the substantia nigra and exacerbate PD symptoms. However, covariants of GBA and LRRK2 combined with hypoxic insults in clinical cases of Parkinsonism have not yet been reported. CASE PRESENTATION A 69-year-old male patient with PD and his relatives were clinically characterized and sequenced using the whole-exome technique. A novel covariant, c.1448 T > C (p. L483P, rs421016) on GBA and c.691 T > C (p. S231P, rs201332859) on LRRK2 were identified in this patient who first developed bradykinesia and rigidity in the neck at one month after an acute hypoxic insult during mountaineering. The patient presented with a mask-like face, festinating gait, asymmetric bradykinesia, and moderate rigidity. These symptoms were treated with levodopa and pramipexole, resulting in a 65% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. These parkinsonian symptoms persisted and developed with hallucinations, constipation, and rapid eye movement sleep behavior disorder. After 4 years, the patient exhibited a wearing-off phenomenon and died from pulmonary infection 8 years after disease onset. His parents, wife, and siblings were not diagnosed with PD, and his son carried p. L483P without Parkinsonism-like symptoms. CONCLUSIONS This is a case report of PD after hypoxic insult in a patient carrying a covariant of GBA and LRRK2. This study may help us understand the interaction between genetic and environmental factors in clinical PD.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
6
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
7
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
8
|
Aasly JO. Long-Term Outcomes of Genetic Parkinson's Disease. J Mov Disord 2020; 13:81-96. [PMID: 32498494 PMCID: PMC7280945 DOI: 10.14802/jmd.19080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of people by the age of 70 years. Age is the most important risk factor, and most cases are sporadic without any known environmental or genetic causes. Since the late 1990s, mutations in the genes SNCA, PRKN, LRRK2, PINK1, DJ-1, VPS35, and GBA have been shown to be important risk factors for PD. In addition, common variants with small effect sizes are now recognized to modulate the risk for PD. Most studies in genetic PD have focused on finding new genes, but few have studied the long-term outcome of patients with the specific genetic PD forms. Patients with known genetic PD have now been followed for more than 20 years, and we see that they may have distinct and different prognoses. New therapeutic possibilities are emerging based on the genetic cause underlying the disease. Future medication may be based on the pathophysiology individualized to the patient’s genetic background. The challenge is to find the biological consequences of different genetic variants. In this review, the clinical patterns and long-term prognoses of the most common genetic PD variants are presented.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Katzeff JS, Phan K, Purushothuman S, Halliday GM, Kim WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019; 7:117. [PMID: 31340844 PMCID: PMC6651992 DOI: 10.1186/s40478-019-0769-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a devastating neurodegenerative disease characterized by the clinical triad of parkinsonism, cerebellar ataxia and autonomic failure, impacting on striatonigral, olivopontocerebellar and autonomic systems. At early stage of the disease, the clinical symptoms of MSA can overlap with those of Parkinson's disease (PD). The key pathological hallmark of MSA is the presence of glial cytoplasmic inclusions (GCI) in oligodendrocytes. GCI comprise insoluble proteinaceous filaments composed chiefly of α-synuclein aggregates, and therefore MSA is regarded as an α-synucleinopathy along with PD and dementia with Lewy bodies. The etiology of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Much data suggests that MSA is a sporadic disease, although some emerging evidence suggests rare genetic variants increase susceptibility. Currently, there is no general consensus on the susceptibility genes as there have been differences due to geographical distribution or ethnicity. Furthermore, many of the reported studies have been conducted on patients that were only clinically diagnosed without pathological verification. The purpose of this review is to bring together available evidence to cross-examine the susceptibility genes and genetic pathomechanisms implicated in MSA. We explore the possible involvement of the SNCA, COQ2, MAPT, GBA1, LRRK2 and C9orf72 genes in MSA pathogenesis, highlight the under-explored areas of MSA genetics, and discuss future directions of research in MSA.
Collapse
Affiliation(s)
- Jared S Katzeff
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
11
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|
12
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|