1
|
Cai D, Wu H, Huang B, Xiao W, Du K. A novel variant of PLA2G6 gene related early-onset parkinsonism: a case report and literature review. Front Neurol 2024; 15:1349861. [PMID: 38699051 PMCID: PMC11063335 DOI: 10.3389/fneur.2024.1349861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/05/2024] Open
Abstract
This study reported a case of early-onset parkinsonism associated with a novel variant of the PLA2G6 gene. The boy first started showing symptoms at the age of 11, with gait instability and frequent falls. As the disease progressed, his gait instability worsened, and he developed difficulties with swallowing and speaking, although there was no apparent decline in cognitive function. An MRI of the head revealed significant atrophy of the cerebellum. The initial diagnosis for the boy was early-onset parkinsonism, classified as Hoehn-Yahr grade 5.Genomic sequencing of the patient indicated that he had compound heterozygous variations in the PLA2G6 gene: c.1454G>A (p.Gly485Glu) and c.991G>T (p.Asp331Tyr). Pedigree analysis revealed that his younger brother also carried the same variant, albeit with milder symptoms. The patient's unaffected mother was found to be a carrier of the c.991G>T variant. Additionally, this study reviewed 62 unrelated families with PLA2G6 gene-related early-onset parkinsonism. The analysis showed a higher proportion of female probands, with a mean age of onset of ~23.0 years. Primary symptoms were predominantly bradykinesia and psychosis, with tremors being relatively rare. Cerebellar atrophy was observed in 41 patients (66.1%). Among the reported mutations, the most common mutation was c.991G>T, presenting in 21 families (33.9%), followed by c.2222G>A in eight families (12.9%). Other mutations were less common. Notably, the c.991G>T mutation was exclusive to Chinese families and was a prevalent mutation among this population. The initial symptoms varied significantly among patients with different mutations.
Collapse
Affiliation(s)
| | | | | | | | - Kang Du
- Department of Neurology, Qujing First People's Hospital, Qujing, Yunnan, China
| |
Collapse
|
2
|
Gao L, Shi C, Lin Q, Wu Y, Hu L, Wang M, Guan J, Lin S, Liao Y, Wu C. Case Report: A case of PLA2G6 gene-related early-onset Parkinson's disease and review of literature. Front Neurosci 2022; 16:1064566. [PMID: 36570855 PMCID: PMC9780693 DOI: 10.3389/fnins.2022.1064566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Early onset Parkinson's disease (EOPD) is a neurodegenerative disease associated with the action ofto genetic factors. A mutated phospholipase A2 type VI gene (PLA2G6) is considered to be one of pathogenic genes involved in EOPD development. Although EOPD caused by a mutated PLA2G6 has been recorded in major databases, not all mutant genotypes have been reported. Here, we report a case of PLA2G6-related EOPD caused by a novel compound heterozygous mutation. Case presentation The case was an of 26-year-old young male with a 2-year course of disease. The onset of the disease was insidious and developed gradually. The patient presented with unsteady walking, bradykinesia, unresponsiveness, and decreased facial expression. Auxiliary examination showed a compound heterozygous mutation of the PLA2G6gene with c.991G > T and c.1427 + 1G > A. Mild atrophy of the cerebrum and cerebellum was detected on brain MRI. The patient was diagnosed with EOPD. We administered treatment with Madopar, which was effective. After a two-year disease course, we observed progression to stage 5 according to the Hoehn-Yahr Scale (without medicine in the off-stage). An MDS-UPDRS III score of 62 was obtained, with characteristics of severe disease and rapid progress. The diagnosis was an EOPD phenotype caused by a combination of mutations at the c.991G > T and c.1427 + 1G > A sites of the PLA2G6gene. Conclusion After active treatment, the disease was set under control, with no significant progression during the three-month follow-up period. Dyskinesia did not recur after reducing the Madopar dose. The freezing sign was slightly decreased and the wearing-off was delayed to 2 h.
Collapse
Affiliation(s)
- Lili Gao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian, China,*Correspondence: Lili Gao
| | - Chunlan Shi
- Department of Neurology, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qing Lin
- Department of Neurology, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Yujing Wu
- Department of Neurology, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liqi Hu
- Department of Neurology, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Mingwang Wang
- Department of Neurology, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jianhua Guan
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian, China
| | - Sheng Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian, China
| | - Yuansheng Liao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian, China
| | - Chenghan Wu
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian, China
| |
Collapse
|
3
|
Wan Y, Jiang Y, Xie Z, Ling C, Du K, Li R, Yuan Y, Wang Z, Sun W, Jin H. Novel PLA2G6 Pathogenic Variants in Chinese Patients With PLA2G6-Associated Neurodegeneration. Front Neurol 2022; 13:922528. [PMID: 35911906 PMCID: PMC9327523 DOI: 10.3389/fneur.2022.922528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background PLA2G6-associated neurodegeneration (PLAN) is a heterogeneous group of neurodegenerative diseases caused by biallelic PLA2G6 mutations, covering diseases such as infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD), dystonia parkinsonism (DP), and autosomal recessive early-onset parkinsonism (AREP). The study aims to report the clinical and genetic features of a series of PLAN patients. Methods The clinical and radiological findings of five Chinese patients from three families were collected. Whole-exome next generation sequencing (NGS) was applied to identify the genetic causes. Co-segregation analysis of the detected candidate variants were performed in their families. The pathogenicity of identified novel variants was predicted by in silico analysis. Results NGS revealed compound heterozygous variants of PLA2G6 gene in all five patients. There were six PLA2G6 variants identified, including two known variants (c.116G>A, c.238G>A) and four novel variants (c.2120dupA, c.2071C>G, c.967G>A, c1534T>A). ACMG predicts c.2120dupA to be pathogenic, c.2071C>G and c.1534T>A to be likely pathogenic, and c1534T>A to be of uncertain significance. Clinically, four patients fell into the diagnosis of ANAD, and 1 into the diagnosis of AREP. Brain imaging revealed cerebellar atrophy, iron deposition in bilateral globus pallidus, and substantia nigra in three cases. Conclusions Four novel pathogenic variants were discovered and the pathogenic variant spectrum of the PLA2G6 gene was expanded.
Collapse
Affiliation(s)
- Yalan Wan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanyan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kang Du
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Li
- Department of Neurology, Huoguosi TCM Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Wei Sun
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
- Haiqiang Jin
| |
Collapse
|
4
|
Non-Motor Symptoms in PLA2G6-Associated Dystonia-Parkinsonism: A Case Report and Literature Review. J Clin Med 2022; 11:jcm11061590. [PMID: 35329915 PMCID: PMC8950520 DOI: 10.3390/jcm11061590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
PLA2G6-dystonia-parkinsonism (PLAN-DP) is characterized by levodopa responsive parkinsonism and dystonia. While neuropsychiatric symptoms and early cognitive decline are also common in this entity there is little information regarding other non-motor symptoms (NMS). Here, we describe a 26-year-old patient with PLAN-DP whose motor symptoms were preceded by mild cognitive impairment and anxiety, and who developed many other NMS as the disease evolved. Furthermore, we reviewed the NMS described in all the PLAN-DP patients published to date. A total of 50 patients with PLAN-DP were identified, 42 of whom developed NMS and in 23 of these cases, NMS preceded the motor symptoms of the disease. Neuropsychiatric symptoms dominated the premotor phase of this condition and cognitive impairment/dementia was the most prevalent NMS. Other NMS were reported infrequently like sleep disorders, autonomic symptoms, pain and hyposmia, and mostly as the disease evolved. NMS are very frequent in PLAN-DP and they may appear before diagnosis or during the course of the disease. Neuropsychiatric symptoms and cognitive decline are the most frequent NMS. The appearance of neuropsychiatric symptoms like depression, anxiety or personality changes prior to a diagnosis of parkinsonism in younger individuals might suggest the presence of PLA2G6 gene mutations.
Collapse
|
5
|
Magrinelli F, Mehta S, Di Lazzaro G, Latorre A, Edwards MJ, Balint B, Basu P, Kobylecki C, Groppa S, Hegde A, Mulroy E, Estevez-Fraga C, Arora A, Kumar H, Schneider SA, Lewis PA, Jaunmuktane Z, Revesz T, Gandhi S, Wood NW, Hardy JA, Tinazzi M, Lal V, Houlden H, Bhatia KP. Dissecting the Phenotype and Genotype of PLA2G6-Related Parkinsonism. Mov Disord 2022; 37:148-161. [PMID: 34622992 DOI: 10.1002/mds.28807] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Complex parkinsonism is the commonest phenotype in late-onset PLA2G6-associated neurodegeneration. OBJECTIVES The aim of this study was to deeply characterize phenogenotypically PLA2G6-related parkinsonism in the largest cohort ever reported. METHODS We report 14 new cases of PLA2G6-related parkinsonism and perform a systematic literature review. RESULTS PLA2G6-related parkinsonism shows a fairly distinct phenotype based on 86 cases from 68 pedigrees. Young onset (median age, 23.0 years) with parkinsonism/dystonia, gait/balance, and/or psychiatric/cognitive symptoms were common presenting features. Dystonia occurred in 69.4%, pyramidal signs in 77.2%, myoclonus in 65.2%, and cerebellar signs in 44.6% of cases. Early bladder overactivity was present in 71.9% of cases. Cognitive impairment affected 76.1% of cases and psychiatric features 87.1%, the latter being an isolated presenting feature in 20.1%. Parkinsonism was levodopa responsive but complicated by early, often severe dyskinesias. Five patients benefited from deep brain stimulation. Brain magnetic resonance imaging findings included cerebral (49.3%) and/or cerebellar (43.2%) atrophy, but mineralization was evident in only 28.1%. Presynaptic dopaminergic terminal imaging was abnormal in all where performed. Fifty-four PLA2G6 mutations have hitherto been associated with parkinsonism, including four new variants reported in this article. These are mainly nontruncating, which may explain the phenotypic heterogeneity of childhood- and late-onset PLA2G6-associated neurodegeneration. In five deceased patients, median disease duration was 13.0 years. Brain pathology in three cases showed mixed Lewy and tau pathology. CONCLUSIONS Biallelic PLA2G6 mutations cause early-onset parkinsonism associated with dystonia, pyramidal and cerebellar signs, myoclonus, and cognitive impairment. Early psychiatric manifestations and bladder overactivity are common. Cerebro/cerebellar atrophy are frequent magnetic resonance imaging features, whereas brain iron deposition is not. Early, severe dyskinesias are a tell-tale sign. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sahil Mehta
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark J Edwards
- Motor Control and Movement Disorders Group, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Purba Basu
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Christopher Kobylecki
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Sergiu Groppa
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University of Mainz, Mainz, Germany
| | - Anaita Hegde
- Department of Paediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Anshita Arora
- Department of Paediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tamas Revesz
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vivek Lal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Gao C, Huang T, Chen R, Yuan Z, Tian Y, Zhang Y. A Han Chinese Family With Early-Onset Parkinson's Disease Carrying Novel Frameshift Mutation and Compound Heterozygous Mutation of PRKN Appearing Incompatible With MDS Clinical Diagnostic Criteria. Front Neurol 2020; 11:582323. [PMID: 33154736 PMCID: PMC7586315 DOI: 10.3389/fneur.2020.582323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Around 15% of patients with Parkinson's disease (PD) have a family history, and 5–10% have confirmed genetic causes. PRKN is the most common gene responsible for early-onset Parkinson's disease (EOPD), while rare variants of PLA2G6 likely raise PD susceptibility in the Chinese population. We investigated the genetic information of 13 members of a Han Chinese family with known EOPD by whole-exome sequencing and Sanger sequencing, and analyzed the clinical history, physical examination, blood laboratory test, and brain imaging data of the patients. Two members, including the proband, were suspected of having EOPD. A novel homozygous frameshift mutation, c.856delT, and a compound heterozygous mutation, c.1321T>C/c.856delT of PRKN, were identified, as well as two single nucleotide variants of PLA2G6 and TENM4. The proband exhibited a rare symmetrical resting tremor limited to her lower limbs and never exhibited signs of rigidity. 18F-DOPA PET/CT scan indicated a symmetrical reduced signaling in the striatum. The novel frameshift mutation and compound heterozygous mutation of PRKN are likely to be the genetic causes of EOPD in this family.
Collapse
Affiliation(s)
- Chenyu Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenhua Yuan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Daida K, Nishioka K, Li Y, Yoshino H, Shimada T, Dougu N, Nakatsuji Y, Ohara S, Hashimoto T, Okiyama R, Yokochi F, Suzuki C, Tomiyama M, Kimura K, Ueda N, Tanaka F, Yamada H, Fujioka S, Tsuboi Y, Uozumi T, Takei T, Matsuzaki S, Shibasaki M, Kashihara K, Kurisaki R, Yamashita T, Fujita N, Hirata Y, Ii Y, Wada C, Eura N, Sugie K, Higuchi Y, Kojima F, Imai H, Noda K, Shimo Y, Funayama M, Hattori N. PLA2G6 variants associated with the number of affected alleles in Parkinson's disease in Japan. Neurobiol Aging 2020; 97:147.e1-147.e9. [PMID: 32771225 DOI: 10.1016/j.neurobiolaging.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate genotype-phenotype correlations of Parkinson's disease (PD) patients with phospholipase A2 group V (PLA2G6) variants. We analyzed the DNA of 798 patients with PD, including 78 PD patients reported previously, and 336 in-house controls. We screened the exons and exon-intron boundaries of PLA2G6 using the Ion Torrent system and Sanger method. We identified 21 patients with 18 rare variants, such that 1, 9, and 11 patients were homozygous, heterozygous, and compound heterozygous, respectively, with respect to PLA2G6 variants. The allele frequency was approximately equal between patients with familial PD and those with sporadic PD. The PLA2G6 variants detected frequently were identified in the early-onset sporadic PD group. Patients who were homozygous for a variant showed more severe symptoms than those who were heterozygous for the variant. The most common variant was p.R635Q in our cohort, which was considered a risk variant for PD. Thus, the variants of PLA2G6 may play a role in familial PD and early-onset sporadic PD.
Collapse
Affiliation(s)
- Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiro Dougu
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | - Shinji Ohara
- Department of Neurology, Iida Hospital, Iida, Nagano, Japan
| | | | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Chieko Suzuki
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takenori Uozumi
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Takanobu Takei
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shigeru Matsuzaki
- Shiga Prefectural Mental Health Medical Center, Kusatsu, Shiga, Japan
| | | | | | - Ryoichi Kurisaki
- Department of Neurology, National Hospital Organization Kumamoto Saishun Medical Center, Koshi, Kumamoto, Japan
| | | | - Nobuya Fujita
- Department of Neurology, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Chizu Wada
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Akita, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | | | - Kazuyuki Noda
- Department of Neurology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
8
|
Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, Duan L, Chen C, Zhou D, He L, Peng R. Whole-exome sequencing in early-onset Parkinson's disease among ethnic Chinese. Neurobiol Aging 2020; 90:150.e5-150.e11. [DOI: 10.1016/j.neurobiolaging.2019.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
9
|
Chu YT, Lin HY, Chen PL, Lin CH. Genotype-phenotype correlations of adult-onset PLA2G6-associated Neurodegeneration: case series and literature review. BMC Neurol 2020; 20:101. [PMID: 32183746 PMCID: PMC7076921 DOI: 10.1186/s12883-020-01684-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 01/14/2023] Open
Abstract
Background Phospholipase A2 group VI (PLA2G6) mutations associated with neurodegeneration (PLAN) manifest as heterogeneous neurodegenerative disorders with variable ages of onset. The genotype-phenotype correlation is not well-established. We aim to describe three adult patients with PLAN and combined these data with results from previous studies to elucidate adult-onset PLA2G6 phenotype-genotype correlations. Case presentations The first index patient presented with dystonia-parkinsonism starting at age 31 years, accompanied by major depression and cognitive decline. Genetic analysis using targeted next generation sequencing (NGS) panel, Sanger sequencing, and segregation analyses revealed a compound heterozygous mutation, c.991G > T (p.D331Y)/c.1077G > A (M358IfsX), in PLA2G6. The other two patients had levodopa-responsive, early-onset parkinsonism, starting in their late twenties. Both patients had homozygous c.991G > T (p.D331Y) mutations in PLA2G6. Patient characteristics of our reported 3 cases were compared to those of 32 previously described (2008 to 2019) patients with adult-onset PLAN. Among the combined cohort of 35 patients with adult-onset PLAN, 14 had dystonia-parkinsonism, 17 had early-onset Parkinson’s disease, 3 had hereditary spastic paraparesis, and one had ataxia. The c.991G > T (p. D331Y) mutation was almost exclusively found in Chinese patients, suggesting a common founder effect. All patients with homozygous p.D331Y mutations had levodopa-responsive, early-onset PD (100%); while other mutations mostly led to dystonia-parkinsonism, ataxia, spasticity, and combine psychiatric comorbidities. Conclusions We showed that adult-onset PLAN could present as purely parkinsonism features, without brain iron accumulation, particularly patients with homozygous p.D331Y mutations. Compound heterozygous mutations, including heterozygous p.D331Y, produced heterogeneous phenotypes, without obvious levodopa responsiveness.
Collapse
Affiliation(s)
- Yung-Tsai Chu
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
10
|
Liu H, Yao Y, Liu H, Peng Y, Ren J, Wu X, Mao R, Zhao J, Zhu Y, Niu Z, Yang T, Sun X, Jiang P, Zhang C, Fang Y. Lack of Association Between PLA2G6 Genetic Variation and Parkinson's Disease: A Systematic Review. Neuropsychiatr Dis Treat 2020; 16:1755-1763. [PMID: 32801710 PMCID: PMC7399463 DOI: 10.2147/ndt.s254065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/06/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The phospholipase A2 Group 6 (PLA2G6, also known as PLA2, PARK14, and iPLA2) gene encodes a group VIA calcium-independent phospholipase A2. Genetic polymorphism of PLA2G6 has been indicated to be involved in conferring susceptibility for Parkinson's disease (PD), whereas conclusive results have not been obtained. Thus, we intended to conduct a systematic review to determine if PLA2G6 genetic variation confers a greater susceptibility to PD. METHODS All case-control studies that investigated the association of the PLA2G6 polymorphisms with the risk of PD published before 15 July 2018 were included. The literature was comprehensively searched and identified in five English databases (EBSCO, Pubmed, OVID, EMBASE and ISI Web of Knowledge) and four Chinese databases (Wanfang database, Chinese Biomedical Literature Database, China Academic Journals Database and VIP database). We performed analyses of study characteristics, heterogeneity, and forest plot in analyses analogous to dominant, codominant and additive models with the pooled odds ratio (OR) in fixed- or random-effects models as the measure of association. RESULTS A total of 664 potentially relevant studies were retrieved with the initial search, of which eight studies fulfilled the inclusion criteria, and included 2,779 PD patients and 3,291 control participants,. Among all the reported 27 genetic variants, 15 single nucleotide polymorphisms (SNPs) were present only in patients, and only five available SNPs (rs2267369, rs140758033, c.1959T>A (Gly653Gly), rs76718524, rs199935023) were pooled in the meta-analysis. However, there was no evidence for a significant association between the five SNPs and PD risk in dominant, codominant and allele models, suggesting a lack of association between PLA2G6 genetic variation and PD susceptibility. CONCLUSION The present study assessed the association of PLA2G6 genetic polymorphism with the risk PD, and the result strongly demonstrates that PLA2G6 polymorphism is not associated with PD susceptibility.
Collapse
Affiliation(s)
- Hongmei Liu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yamin Yao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hongbo Liu
- Department of Blood Transfusion, Loudi Center Hospital, Loudi, People's Republic of China
| | - Yanmin Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Juanjuan Ren
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaohui Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruizhi Mao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuncheng Zhu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiang Niu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Yang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiujia Sun
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping Jiang
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Kamel WA, Al-Hashel JY, Abdulsalam AJ, Damier P, Al-Mejalhem AY. PLA2G6-related parkinsonism presenting as adolescent behavior. Acta Neurol Belg 2019; 119:621-622. [PMID: 30120687 DOI: 10.1007/s13760-018-1003-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
12
|
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67:74-89. [DOI: 10.1016/j.parkreldis.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
|
13
|
Shen T, Hu J, Jiang Y, Zhao S, Lin C, Yin X, Yan Y, Pu J, Lai HY, Zhang B. Early-Onset Parkinson's Disease Caused by PLA2G6 Compound Heterozygous Mutation, a Case Report and Literature Review. Front Neurol 2019; 10:915. [PMID: 31496990 PMCID: PMC6712964 DOI: 10.3389/fneur.2019.00915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
PLA2G6 has been certified as a causative gene in patients with autosomal recessive early-onset Parkinson's disease (EOPD). We reported an EOPD case caused by PLA2G6 gene mutation, and performed neurological examination, genetic analysis, and multimodal neuroimaging to describe this phenotype. A compound heterozygous mutation c.991G>T/c.1472+1G>A was detected in this patient. Heterozygous for the c.991G>T and c.1472+1G>A were separately detected in his parents. Pathogenicity of these two mutations were predicted according to the American college of medical genetics and genomics (ACMG) guideline. MRI assessment showed absence of bilateral “swallow tail sign” and cerebellar atrophy in this patient, while no obvious difference in brain iron accumulation between PLA2G6 mutant PD patient and healthy controls. Cerebellar abnormalities may be a marker for diagnosis and evaluation of PLA2G6 mutation Parkinsonism. However, the iron accumulation in PD may not be the result of PLA2G6 mutation.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jing Hu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yasi Jiang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Shuai Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Caixiu Lin
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xinzhen Yin
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yaping Yan
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Ji Y, Li Y, Shi C, Gao Y, Yang J, Liang D, Yang Z, Xu Y. Identification of a novel mutation in PLA2G6 gene and phenotypic heterogeneity analysis of PLA2G6-related neurodegeneration. Parkinsonism Relat Disord 2019; 65:159-164. [PMID: 31196701 DOI: 10.1016/j.parkreldis.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION This study reports a novel mutation site of the phospholipase A2 group VI (PLA2G6) gene, and analyzes the information of 67 previously published cases to elucidate PLA2G6 phenotype-genotype variations. METHODS We collected clinical data and examined gene mutation sites from one Chinese patient with adult-onset ataxia and her family. Next-generation sequencing (NGS) and Sanger sequencing were used to verify possible mutations. PolyPhen-2, SIFT, and MutationTaster were used to predict their pathogenicity. For analyzing the distribution frequency of the mutation, 597 healthy controls were recruited. We also analyzed the clinical and genetic information of 67 cases from 23 studies in Pubmed database. RESULTS A novel compound heterozygous mutation of the PLA2G6 gene, c.1648delC and c.991G > T, was found in the Chinese patient, and classified as pathogenic. The c.1648delC variation was absent in ExAC, 1000G, dbSNP databases and the 597 healthy controls. Of the 67 cases, 29 presented ataxia. The signs of cerebellar atrophy appeared in the MRIs of most patients, while signs of iron accumulation were absent in older-aged patients with a compound heterozygous mutation. Thirty-eight patients showed no ataxia. A negative or mild extrapyramidal symptom accompanied by a low age, a homogenous mutation, while moderate or severe extrapyramidal symptoms were associated with an old age and a compound heterozygous mutation. CONCLUSION A novel compound heterozygous mutation of the PLA2G6 gene, c.1648delC and c.991G > T, is associated with adult onset ataxia. Phenotype-genotype variations of PLA2G6 are predicted to be caused by the loss of protein or enzyme activity of phospholipase-2.
Collapse
Affiliation(s)
- Yan Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dongyi Liang
- The Medical College of ZhengZhou University, Zhengzhou, Henan, 450050, China
| | - Zhihua Yang
- The Medical College of ZhengZhou University, Zhengzhou, Henan, 450050, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
15
|
Cheng YC, Lin HI, Syu SH, Lu HE, Huang CY, Lin CH, Hsieh PCH. Reprogramming of a human induced pluripotent stem cell (iPSC) line (IBMSi012-A) from an early-onset Parkinson's disease patient harboring a homozygous p.D331Y mutation in the PLA2G6 gene. Stem Cell Res 2019; 37:101432. [PMID: 30978640 DOI: 10.1016/j.scr.2019.101432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
Abstract
A recessive mutation in PLA2G6, which is known to cause a heterogeneous neurodegenerative clinical spectrum, has recently been shown to be responsible for autosomal-recessive familial forms of Parkinson's disease (PD). Here, we generated induced pluripotent stem cells (iPSCs) from the peripheral blood mononuclear cells of a female patient with a homozygous PLA2G6 c.991G > T (p.D331Y) mutation by using the Sendai-virus delivery system. The resulting iPSCs showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. This cellular model will provide a good resource for further pathophysiological studies of PD.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Han-I Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Han Syu
- Food Industry Research and development Institute, Hsinchu, Taiwan
| | - Huai-En Lu
- Food Industry Research and development Institute, Hsinchu, Taiwan
| | - Ching-Ying Huang
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan.
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Patrick C H Hsieh
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
16
|
Guo YP, Tang BS, Guo JF. PLA2G6-Associated Neurodegeneration (PLAN): Review of Clinical Phenotypes and Genotypes. Front Neurol 2018; 9:1100. [PMID: 30619057 PMCID: PMC6305538 DOI: 10.3389/fneur.2018.01100] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN) includes a series of neurodegenerative diseases that result from the mutations in PLA2G6. PLAN has genetic and clinical heterogeneity, with different mutation sites, mutation types and ethnicities and its clinical phenotype is different. The clinical phenotypes and genotypes of PLAN are closely intertwined and vary widely. PLA2G6 encodes a group of VIA calcium-independent phospholipase A2 proteins (iPLA2β), an enzyme involved in lipid metabolism. According to the age of onset and progressive clinical features, PLAN can be classified into the following subtypes: infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD) and parkinsonian syndrome which contains adult onset dystonia parkinsonism (DP) and autosomal recessive early-onset parkinsonism (AREP). In this review, we present an overview of PLA2G6-associated neurodegeneration in the context of current research.
Collapse
Affiliation(s)
- Yu-Pei Guo
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
17
|
Parkinson's Disease and Metal Storage Disorders: A Systematic Review. Brain Sci 2018; 8:brainsci8110194. [PMID: 30384510 PMCID: PMC6267486 DOI: 10.3390/brainsci8110194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Metal storage disorders (MSDs) are a set of rare inherited conditions with variable clinical pictures including neurological dysfunction. The objective of this study was, through a systematic review, to identify the prevalence of Parkinsonism in patients with MSDs in order to uncover novel pathways implemented in Parkinson’s disease. Human studies describing patients of any age with an MSD diagnosis were analysed. Foreign language publications as well as animal and cellular studies were excluded. Searches were conducted through PubMed and Ovid between April and September 2018. A total of 53 publications were identified including 43 case reports, nine cross-sectional studies, and one cohort study. The publication year ranged from 1981 to 2018. The most frequently identified MSDs were Pantothenate kinase-associated neurodegeneration (PKAN) with 11 papers describing Parkinsonism, Hereditary hemochromatosis (HH) (7 papers), and Wilson’s disease (6 papers). The mean ages of onset of Parkinsonism for these MSDs were 33, 53, and 48 years old, respectively. The Parkinsonian features described in the PKAN and HH patients were invariably atypical while the majority (4/6) of the Wilson’s disease papers had a typical picture. This paper has highlighted a relationship between MSDs and Parkinsonism. However, due to the low-level evidence identified, further research is required to better define what the relationship is.
Collapse
|
18
|
Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Mol Neurobiol 2018; 56:3835-3853. [PMID: 30088174 DOI: 10.1007/s12035-018-1118-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson's disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Jun Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei City, 110, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
19
|
Novel PLA2G6 mutations and clinical heterogeneity in Chinese cases with phospholipase A2-associated neurodegeneration. Parkinsonism Relat Disord 2018; 49:88-94. [DOI: 10.1016/j.parkreldis.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
|
20
|
Severe early-onset impulsive compulsive behavior and psychosis in PLA2G6 -related juvenile Parkinson's disease. Parkinsonism Relat Disord 2017; 41:127-129. [DOI: 10.1016/j.parkreldis.2017.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
|
21
|
Giri A, Guven G, Hanagasi H, Hauser AK, Erginul-Unaltuna N, Bilgic B, Gurvit H, Heutink P, Gasser T, Lohmann E, Simón-Sánchez J. PLA2G6 Mutations Related to Distinct Phenotypes: A New Case with Early-onset Parkinsonism. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:363. [PMID: 27127721 PMCID: PMC4811020 DOI: 10.7916/d81g0m12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 01/25/2023]
Abstract
Background PLA2G6-associated neurodegeneration (PLAN) is a recessive neurodegenerative disorder characterized by three distinct phenotypes: infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (atypical NAD), and PLA2G6-related dystonia–parkinsonism. Methods A consanguineous index case from Turkey was diagnosed with early-onset Parkinsonism at the Istanbul Faculty of Medicine. She and her unaffected brother were subjected to whole-genome sequencing. Results In this report, we describe a 33-year-old index case with parental consanguinity and early-onset Parkinsonism. Whole-genome sequencing of this individual revealed that a homozygous p.R747W mutation in PLA2G6 segregates with the disease in this family Discussion This result supports the importance of prioritizing this gene in mutational analysis of autosomal recessive Parkinsonism, and confirms the clinical heterogeneity of PLAN.
Collapse
Affiliation(s)
- Anamika Giri
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Gamze Guven
- Genetics Department, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ann-Kathrin Hauser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nihan Erginul-Unaltuna
- Genetics Department, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Peter Heutink
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Ebba Lohmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Javier Simón-Sánchez
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Kinghorn KJ, Castillo-Quan JI. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation. Rare Dis 2016; 4:e1128616. [PMID: 27141409 PMCID: PMC4838319 DOI: 10.1080/21675511.2015.1128616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/11/2015] [Accepted: 12/01/2015] [Indexed: 10/26/2022] Open
Abstract
The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.
Collapse
Affiliation(s)
- Kerri J Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Environment and Evolution, University College London, London, UK; Institute of Neurology, University College London, Queen Square, London, UK
| | - Jorge Iván Castillo-Quan
- Institute of Healthy Ageing and Department of Genetics, Environment and Evolution, University College London, London, UK; Institute of Neurology, University College London, Queen Square, London, UK
| |
Collapse
|
23
|
Karkheiran S, Shahidi GA, Walker RH, Paisán-Ruiz C. PLA2G6-associated Dystonia-Parkinsonism: Case Report and Literature Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015. [PMID: 26196026 PMCID: PMC4503963 DOI: 10.7916/d84q7t4w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Phospholipase-associated neurodegeneration (PLAN) caused by PLA2G6 mutations is a recessively inherited disorder with three known phenotypes: the typical infantile onset neuroaxonal dystrophy (INAD); an atypical later onset form (atypical NAD); and the more recently recognized young-onset dystonia–parkinsonism (PLAN-DP). Case Report We report the clinical, radiological, and genetic findings of a young Pakistani male with PLAN-DP. We review 11 previously published case reports cited in PubMed, and summarize the demographic, clinical, genetic, and radiological data of the 23 patients described in those articles. Discussion PLAN-DP presents with diverse motor, autonomic, and neuropsychiatric features and should be considered in the differential diagnosis of patients with young-onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Siamak Karkheiran
- Movement Disorders Clinic, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Shahidi
- Movement Disorders Clinic, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA ; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coro Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; The Friedman Brain and The Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|