1
|
Guimarães TG, Parmera JB, Castro MAA, Cury RG, Barbosa ER, Kok F. X-Linked Levodopa-Responsive Parkinsonism-Epilepsy Syndrome: A Novel PGK1 Mutation and Literature Review. Mov Disord Clin Pract 2024; 11:556-566. [PMID: 38341651 PMCID: PMC11078492 DOI: 10.1002/mdc3.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Genetic underpinnings in Parkinson's disease (PD) and parkinsonian syndromes are challenging, and recent discoveries regarding their genetic pathways have led to potential gene-specific treatment trials. CASES We report 3 X-linked levodopa (l-dopa)-responsive parkinsonism-epilepsy syndrome cases due to a hemizygous variant in the phosphoglycerate kinase 1 (PGK1) gene. The likely pathogenic variant NM_000291.4 (PGK1):c.950G > A;p.(Gly317Asp) was identified in a hemizygous state. LITERATURE REVIEW Only 8 previous cases have linked this phenotype to PGK1, a gene more commonly associated with hemolytic anemia and myopathy. The unusual association of epilepsy, psychiatric symptoms, action tremor, limb dystonia, cognitive symptoms, and l-dopa-responsive parkinsonism must draw attention to PGK1 mutations, especially because this gene is absent from most commercial hereditary parkinsonism panels. CONCLUSIONS This report aims to shed light on an overlooked gene that causes hereditary parkinsonian syndromes. Further research regarding genetic pathways in PD may provide a better understanding of its pathophysiology and open possibilities for new disease-modifying trials, such as SNCA, LRRK2, PRKN, PINK1, and DJ-1 genes.
Collapse
Affiliation(s)
- Thiago Gonçalves Guimarães
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| | - Jacy Bezerra Parmera
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | | | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Fernando Kok
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| |
Collapse
|
2
|
Kartanou C, Mitrousias A, Pellerin D, Kontogeorgiou Z, Iruzubieta P, Dicaire MJ, Danzi MC, Koniari C, Athanassopoulos K, Panas M, Stefanis L, Zuchner S, Brais B, Houlden H, Karadima G, Koutsis G. The FGF14 GAA repeat expansion in Greek patients with late-onset cerebellar ataxia and an overview of the SCA27B phenotype across populations. Clin Genet 2024; 105:446-452. [PMID: 38221848 DOI: 10.1111/cge.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.
Collapse
Affiliation(s)
- Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Alexandros Mitrousias
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Pablo Iruzubieta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chrysoula Koniari
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Konstantinos Athanassopoulos
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| |
Collapse
|
3
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Hagerman R, Tassone F, Rivera SM. FMR1 Carriers Report Executive Function Changes Prior to Fragile X-Associated Tremor/Ataxia Syndrome: A Longitudinal Study. Mov Disord 2024; 39:519-525. [PMID: 38124331 PMCID: PMC11268876 DOI: 10.1002/mds.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Elagerman R, Tassone F, Rivera SM. A Longitudinal Study of Executive Function in Daily Life in Male Fragile X Premutation Carriers and Association with FXTAS Conversion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294855. [PMID: 37693384 PMCID: PMC10491369 DOI: 10.1101/2023.08.31.23294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies have made it difficult to address this hypothesis. Methods This study included 66 FMR1 premutation carriers (PC) ranging from 40-78 years (Mean=59.5) and 31 well-matched healthy controls (HC) ages 40-75 (Mean 57.7) at baseline. Eighty-four participants returned for 2-5 follow up visits over a duration of 1 to 9 years (Mean=4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. Results Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, BRIEF-A executive function problems at baseline significantly predicted later development of FXTAS. Conclusions These findings suggest that executive function changes represent a prodrome of the later movement disorder.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Elagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Chen J, Zhao Y, Zhou X, Xue J, Xiao Q, Pan H, Zhou X, Xiang Y, Li J, Zhu L, Zhou Z, Yang Y, Xu Q, Sun Q, Yan X, Tan J, Li J, Guo J, Duan R, Tang B, Yu Q, Liu Z. Evaluation of the role of FMR1 CGG repeat allele in Parkinson's disease from the Chinese population. Front Aging Neurosci 2023; 15:1234027. [PMID: 37583466 PMCID: PMC10423993 DOI: 10.3389/fnagi.2023.1234027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Objective There is controversial evidence that FMR1 premutation or "gray zone" (GZ) allele (small CGG expansion, 45-54 repeats) was associated with Parkinson's disease (PD). We aimed to explore further the association between FMR1 CGG repeat expansions and PD in a large sample of Chinese origin. Methods We included a cohort of 2,362 PD patients and 1,072 controls from the Parkinson's Disease and Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) in this study and conducted repeat-primed polymerase chain reaction (RP-PCR) for the size of FMR1 CGG repeat expansions. Results Two PD patients were detected with FMR1 premutation (61 and 56 repeats), and the other eleven PD patients were detected with the GZ allele of FMR1 CGG repeat expansions. Those thirteen PD patients responded well to levodopa and were diagnosed with clinically established PD. Specifically, one female PD patient with GZ allele was also found with premature ovarian failure. However, compared to healthy controls, we found no significant enrichment of GZ allele carriers in PD patients or other subgroups of PD cases, including the subgroups of female, male, early-onset, and late-onset PD patients. Furthermore, we did not find any correlation between the FMR1 gene CGG repeat sizes and age at onset of PD. Conclusion It suggested that FMR1 premutation was related to PD, but the GZ allele of FMR1 CGG repeat expansions was not significantly enriched in PD cases of Chinese origin. Further larger multiple ethnic studies are needed to determine further the role of the FMR1 GZ allele in PD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Xue
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiao Xiao
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Ranhui Duan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Qiao Yu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|