1
|
Shen H, Zhu B, Qian Y, Jin J, Zhou J, Peng G, Mo J. Advances in Research on Meningeal Lymphatic Vessels in Central Nervous System Diseases. J Craniofac Surg 2024:00001665-990000000-02238. [PMID: 39630968 DOI: 10.1097/scs.0000000000010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024] Open
Abstract
Meningeal lymphatic vessels (mLVs), located around the dural sinuses, are considered significant participants in cerebrospinal fluid (CSF) circulation. Meningeal lymphatic vessels not only drain fluids and metabolic waste from the brain into deep cervical lymph nodes (dCLNs) but also transport immune cells from the brain to dCLNs, thus regulating the interaction between the central and peripheral immune systems. These vessels play a crucial role in maintaining normal physiological functions of the central nervous system (CNS). Meningeal lymphatic vessels are involved in the pathophysiological processes of various CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, and brain tumors. In aging and various CNS diseases, damage and dysfunction of mLVs have been observed, leading to the abnormal accumulation of toxic substances and exacerbating neural damage. By transporting antigen-presenting cells that have taken up antigens within the brain to dCLNs, mLVs modulate the activation of peripheral immune cells and their migration and infiltration into brain lesions. Certain drug interventions or physical therapies can modulate the drainage function of mLVs, effectively improving the prognosis of CNS diseases. This review provides a detailed introduction to the anatomic structure, physiological roles, and research advances of mLVs in CNS diseases. In addition, we propose new strategies for targeting mLVs in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Huimin Shen
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Bingrui Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | - Yajun Qian
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiancheng Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Jiankuai Zhou
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Guotao Peng
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| |
Collapse
|
2
|
Zhou C, Jiang X, Guan X, Guo T, Wu J, Wu H, Wu C, Chen J, Wen J, Tan S, Duanmu X, Qin J, Yuan W, Zheng Q, Huang P, Zhang B, Xu X, Zhang M. Glymphatic system dysfunction and risk of clinical milestones in patients with Parkinson disease. Eur J Neurol 2024; 31:e16521. [PMID: 39425566 PMCID: PMC11554988 DOI: 10.1111/ene.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND PURPOSE Glymphatic dysfunction may play a significant role in the development of neurodegenerative diseases. We aimed to evaluate the association between glymphatic dysfunction and the risk of malignant event/clinical milestones in Parkinson disease (PD). METHODS This study included 236 patients from August 2014 to December 2020. Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index was calculated as an approximate measure of glymphatic function. The primary outcomes were four clinical milestones including recurrent falls, wheelchair dependence, dementia, and placement in residential or nursing home care. The associations of DTI-ALPS with the risk of clinical milestones were examined using multivariate Cox proportional hazards regression models. Then, logistic regression was repeated using clinical variables and DTI-ALPS index individually and in combination of the two to explore the ability to distinguish patients who reached clinical milestones within a 5-year period. RESULTS A total of 175 PD patients with baseline DTI-ALPS index and follow-up clinical assessments were included. A lower DTI-ALPS was independently associated with increased risk of recurrent falls, wheelchair dependence, and dementia. Additionally, in 103 patients monitored over 5 years, a logistic regression model combining clinical variables and DTI-ALPS index showed better performance for predicting wheelchair dependence within 5 years than a model using clinical variables or DTI-ALPS index alone. CONCLUSIONS Glymphatic dysfunction, as measured by the DTI-ALPS index, was associated with increased risk of clinical milestones in patients with PD. This finding implies that therapy targeting the glymphatic system may serve as a viable strategy for slowing down the progression of PD.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xianchen Jiang
- Department of Chronic Noncommunicable DiseaseQuzhou Center for Disease Control and PreventionQuzhouChina
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Georgiopoulos C, Werlin A, Lasic S, Hall S, van Westen D, Spotorno N, Hansson O, Nilsson M. Diffusion tensor imaging along the perivascular space: the bias from crossing fibres. Brain Commun 2024; 6:fcae421. [PMID: 39713238 PMCID: PMC11660947 DOI: 10.1093/braincomms/fcae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Non-invasive evaluation of glymphatic function has emerged as a crucial goal in neuroimaging, and diffusion tensor imaging along the perivascular space (DTI-ALPS) has emerged as a candidate method for this purpose. Reduced ALPS index has been suggested to indicate impaired glymphatic function. However, the potential impact of crossing fibres on the ALPS index has not been assessed, which was the aim of this cross-sectional study. For this purpose, we used DTI-ALPS in a cohort with three groups: Parkinson's disease (PD) (n = 60, mean age 63.3 ± 1.5, 33 males), progressive supranuclear palsy (PSP) (n = 17, mean age 70.9 ± 1.5, 9 males) and healthy controls (n = 41, mean age 64.5 ± 8.4, 15 males). The ALPS index was calculated blinded to diagnosis, by manually placing two sets of regions of interest (ROI) on the projection and association fibres of each hemisphere. Annotation was performed twice: once on conventional diffusion-encoded colour maps weighted by fractional anisotropy and once on maps with weights adjusted for high incidence of crossing fibres. PSP patients had significantly lower conventional ALPS indices compared with both healthy controls (right hemisphere: P = 0.009; left hemisphere: P < 0.001) and PD patients (right hemisphere: P = 0.024; left hemisphere: P < 0.001). There were no differences between healthy controls and PD patients. After adjusting the ROI to avoid regions of crossing fibres, the ALPS index significantly decreased in healthy controls (right hemisphere: P < 0.001; left hemisphere: P < 0.001) and PD (right hemisphere: P < 0.001; left hemisphere: P < 0.001). In PSP, the adjusted ALPS index was lower compared with the conventional one only in the right hemisphere (P = 0.047). Overall, this adjustment led to less significant differences among diagnostic groups. Specifically, with the adjusted ALPS index, PSP patients showed significantly lower ALPS index compared with healthy controls (right hemisphere: P = 0.044; left hemisphere: P = 0.029) and PD patients (P = 0.003 for the left hemisphere only). Our results suggest that crossing fibres significantly inflate the ALPS index and should be considered a critical pitfall of this method. This factor could partly explain the variability observed in previous studies. Unlike previous research, we observed no differences between PD and healthy controls, likely because most patients in our cohort were in the early phase of the disease. Thus, the ALPS index may not be a sensitive indicator of glymphatic function at least in the initial stages of neurodegeneration in PD.
Collapse
Affiliation(s)
- Charalampos Georgiopoulos
- Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden
- Image and Function, Skåne University Hospital, 221 85 Lund, Sweden
| | - Alice Werlin
- Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden
| | - Samo Lasic
- Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden
| | - Sara Hall
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Faculty of Medicine, Lund University, 211 46 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden
- Image and Function, Skåne University Hospital, 221 85 Lund, Sweden
| | - Nicola Spotorno
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Faculty of Medicine, Lund University, 211 46 Malmö, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Faculty of Medicine, Lund University, 211 46 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden
| |
Collapse
|
4
|
Costa T, Manuello J, Premi E, Mattioli I, Lasagna L, Lahoz CB, Cauda F, Duca S, Liloia D. Evaluating the robustness of DTI-ALPS in clinical context: a meta-analytic parallel on Alzheimer's and Parkinson's diseases. Sci Rep 2024; 14:26381. [PMID: 39487289 PMCID: PMC11530450 DOI: 10.1038/s41598-024-78132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
In recent years, the glymphatic system has received increasing attention due to its possible implications in biological mechanisms associated with neurodegeneration. In the field of human brain mapping, this led to the development of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. While this index has been repeatedly used to investigate possible differences between neurodegenerative disorders and healthy controls, a comprehensive evaluation of its stability across multiple measurements and different disorders is still missing. In this study, we perform a Bayesian meta-analysis aiming to assess the consistency of the DTI-ALPS results previously reported for 12 studies on Parkinson's disease and 11 studies on Alzheimer's disease. We also evaluated if the measured value of the DTI-ALPS index can quantitatively inform the diagnostic process, allowing disambiguation between these two disorders. Our results, expressed in terms of Bayes' Factor values, confirmed that the DTI-ALPS index is consistent in measuring the different functioning of the glymphatic system between healthy subjects and patients for both Parkinson's disease (Log10(BF10) = 30) and Alzheimer's disease (Log10(BF10) = 10). Moreover, we showed that the DTI-ALPS can be used to compare these two disorders directly, therefore providing a first proof of concept supporting the reliability of taking into consideration this neuroimaging measurement in the diagnostic process. Our study underscores the potential of the DTI-ALPS index in advancing our understanding of neurodegenerative pathologies and enhancing clinical diagnostics.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy.
| | - Enrico Premi
- Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Irene Mattioli
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Luca Lasagna
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Clara Ballonga Lahoz
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
| |
Collapse
|
5
|
Gui Q, Meng J, Shen M, Feng H, Dong X, Xu D, Zhu W, Cheng Q, Wang L, Wu G, Lu Y. Relationship of Glymphatic Function with Cognitive Impairment, Sleep Disorders, Anxiety and Depression in Patients with Parkinson's Disease. Neuropsychiatr Dis Treat 2024; 20:1809-1821. [PMID: 39346025 PMCID: PMC11439361 DOI: 10.2147/ndt.s480183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Previous studies have predominantly explored the relationship of the glymphatic system with motor symptoms in Parkinson's disease (PD); however, research on non-motor symptoms remains limited. Therefore, this study investigated the association between glymphatic function and non-motor symptoms, including cognitive impairment and sleep disorders, in PD patients. Methods This study recruited 49 PD patients and 38 healthy controls (HC). Glymphatic function was evaluated using enlarged perivascular spaces (EPVS) in the basal ganglia (BG) region and diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. Cognition, sleep, anxiety, and depression scales were assessed in all participants. According to the scale scores, PD patients were further divided into several groups to identify the presence of non-motor symptoms. Differences in EPVS numbers and ALPS index between PD subgroups and HC group were compared. Spearman correlation analysis was performed to investigate the association between the PD non-motor symptoms and ALPS index. Additionally, receiver operating characteristic (ROC) curves analysis was conducted for ALPS index to predict cognitive impairment and insomnia in PD patients. Results PD patients with and without non-motor symptoms all showed more EPVS numbers than the controls, and the EPVS numbers in PD patients with cognitive impairment were also greater than those without. Notably, except for the depression subgroup, PD patients with non-motor symptoms showed significantly lower ALPS index than the controls. The Montreal Cognitive Assessment (MoCA) scores were positively correlated, whereas the Parkinson's Disease Sleep Scale (PDSS)-2 and REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) scores were negatively correlated with the ALPS index in PD patients (r=0.3618, P=0.0053; r=-0.4146, P=0.0015; r=-0.2655, P=0.0326, respectively). The ALPS index proved to be predictive of cognitive impairment and insomnia in PD patients (AUC=0.7733, P=0.001; AUC=0.7993, P=0.0004, respectively). Conclusion Glymphatic function is closely associated with cognition and sleep of PD patients.
Collapse
Affiliation(s)
- Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Jingcai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Mingqiang Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Daqiang Xu
- Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Wenxin Zhu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Linhui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Yanli Lu
- Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| |
Collapse
|
6
|
Ikeda L, Capel AV, Doddaballapur D, Miyan J. Accumulation of Cerebrospinal Fluid, Ventricular Enlargement, and Cerebral Folate Metabolic Errors Unify a Diverse Group of Neuropsychiatric Conditions Affecting Adult Neocortical Functions. Int J Mol Sci 2024; 25:10205. [PMID: 39337690 PMCID: PMC11432090 DOI: 10.3390/ijms251810205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a fluid critical to brain development, function, and health. It is actively secreted by the choroid plexus, and it emanates from brain tissue due to osmolar exchange and the constant contribution of brain metabolism and astroglial fluid output to interstitial fluid into the ventricles of the brain. CSF acts as a growth medium for the developing cerebral cortex and a source of nutrients and signalling throughout life. Together with perivascular glymphatic and interstitial fluid movement through the brain and into CSF, it also acts to remove toxins and maintain metabolic balance. In this study, we focused on cerebral folate status, measuring CSF concentrations of folate receptor alpha (FOLR1); aldehyde dehydrogenase 1L1, also known as 10-formyl tetrahydrofolate dehydrogenase (ALDH1L1 and FDH); and total folate. These demonstrate the transport of folate from blood across the blood-CSF barrier and into CSF (FOLR1 + folate), and the transport of folate through the primary FDH pathway from CSF into brain FDH + ve astrocytes. Based on our hypothesis that CSF flow, drainage issues, or osmotic forces, resulting in fluid accumulation, would have an associated cerebral folate imbalance, we investigated folate status in CSF from neurological conditions that have a severity association with enlarged ventricles. We found that all the conditions we examined had a folate imbalance, but these folate imbalances were not all the same. Given that folate is essential for key cellular processes, including DNA/RNA synthesis, methylation, nitric oxide, and neurotransmitter synthesis, we conclude that ageing or some form of trauma in life can lead to CSF accumulation and ventricular enlargement and result in a specific folate imbalance/deficiency associated with the specific neurological condition. We believe that addressing cerebral folate imbalance may therefore alleviate many of the underlying deficits and symptoms in these conditions.
Collapse
Affiliation(s)
| | | | | | - Jaleel Miyan
- Division of Neuroscience, Faculty of Biology, Medicine & Health, School of Biological Science, The University of Manchester, 3.540 Stopford Building, Oxford Road, Manchester M13 9PT, UK; (L.I.); (A.V.C.); (D.D.)
| |
Collapse
|
7
|
Wood KH, Nenert R, Miften AM, Kent GW, Sleyster M, Memon RA, Joop A, Pilkington J, Memon AA, Wilson RN, Catiul C, Szaflarski J, Amara AW. Diffusion Tensor Imaging-Along the Perivascular-Space Index Is Associated with Disease Progression in Parkinson's Disease. Mov Disord 2024; 39:1504-1513. [PMID: 38988232 PMCID: PMC11524528 DOI: 10.1002/mds.29908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The glymphatic clearance pathway is a waste clearance system that allows for removal of soluble proteins such as amyloid β (Aβ) from the brain. Higher Aβ levels are associated with cognitive dysfunction in Parkinson's disease (PD). Diffusion tensor imaging-along the perivascular space (DTI-ALPS) is an imaging measure proposed to indirectly measure glymphatic function. OBJECTIVES Evaluate differences in DTI-ALPS-index between PD and healthy controls (HC) and characterize relationships between this proposed measure of glymphatic clearance, cognition, and disease severity in PD. METHODS PD (n = 32) and HC (n = 23) participants underwent brain imaging to assess DTI-ALPS. PD participants were classified as PD-normal cognition (PD-NC; n = 20) or PD-mild cognitive impairment (PD-MCI; n = 12) based on a Level II comprehensive cognitive assessment. A subgroup of PD participants (n = 21) returned for annual assessments for up to 4 years after baseline. Longitudinal outcomes included changes in performance on the comprehensive cognitive assessment and changes in the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). RESULTS PD participants had lower DTI-ALPS-index compared to HC. PD participants classified as PD-MCI had significantly lower DTI-ALPS-index compared to PD-NC. Lower DTI-ALPS-index at baseline was associated with longitudinal cognitive decline and worse longitudinal disease severity. CONCLUSIONS Glymphatic clearance, as measured with DTI-ALPS, has potential to serve as a marker of longitudinal disease progression. Interventions targeting glymphatic function should be explored for potential to slow cognitive decline in PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kimberly H. Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
- Department of Psychology, Samford University, Birmingham, AL
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Aya M. Miften
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - George W. Kent
- Department of Psychology, Samford University, Birmingham, AL
| | - Madison Sleyster
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | | | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Adeel A. Memon
- Department of Neurology, West Virginia University, Morgantown, WV
| | - Riis N. Wilson
- Department of Psychology, Samford University, Birmingham, AL
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Jerzy Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Amy W. Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Wright AM, Wu YC, Feng L, Wen Q. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR IN BIOMEDICINE 2024; 37:e5162. [PMID: 38715420 PMCID: PMC11303114 DOI: 10.1002/nbm.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University
School of Medicine, Indianapolis, Indiana, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research
(CAI2R), New York University Grossman School of Medicine, New York, New York,
USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Pang H, Wang J, Yu Z, Yu H, Li X, Bu S, Zhao M, Jiang Y, Liu Y, Fan G. Glymphatic function from diffusion-tensor MRI to predict conversion from mild cognitive impairment to dementia in Parkinson's disease. J Neurol 2024; 271:5598-5609. [PMID: 38913186 PMCID: PMC11319419 DOI: 10.1007/s00415-024-12525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Although brain glymphatic dysfunction is a contributing factor to the cognitive deficits in Parkinson's disease (PD), its role in the longitudinal progression of cognitive dysfunction remains unknown. OBJECTIVE To investigate the glymphatic function in PD with mild cognitive impairment (MCI) that progresses to dementia (PDD) and to determine its predictive value in identifying individuals at high risk for developing dementia. METHODS We included 64 patients with PD meeting criteria for MCI and categorized them as either progressed to PDD (converters) (n = 29) or did not progress to PDD (nonconverters) (n = 35), depending on whether they developed dementia during follow-up. Meanwhile, 35 age- and gender-matched healthy controls (HC) were included. Bilateral diffusion-tensor imaging analysis along the perivascular space (DTI-ALPS) indices and enlarged perivascular spaces (EPVS) volume fraction in bilateral centrum semiovale, basal ganglia (BG), and midbrain were compared among the three groups. Correlations among the DTI-ALPS index and EPVS, as well as cognitive performance were analyzed. Additionally, we investigated the mediation effect of EPVS on DTI-ALPS and cognitive function. RESULTS PDD converters had lower cognitive composites scores in the executive domains than did nonconverters (P < 0.001). Besides, PDD converters had a significantly lower DTI-ALPS index in the left hemisphere (P < 0.001) and a larger volume fraction of BG-PVS (P = 0.03) compared to HC and PDD nonconverters. Lower DTI-ALPS index and increased BG-PVS volume fraction were associated with worse performance in the global cognitive performance and executive function. However, there was no significant mediating effect. Receiver operating characteristic analysis revealed that the DTI-ALPS could effectively identify PDD converters with an area under the curve (AUC) of 0.850. CONCLUSION The reduction of glymphatic activity, measured by the DTI-ALPS, could potentially be used as a non-invasive indicator in forecasting high risk of dementia conversion before the onset of dementia in PD patients.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juzhou Wang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyang Yu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongmei Yu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolu Li
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuting Bu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengwan Zhao
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing, China
| | - Yu Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guoguang Fan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Tian B, Zhao C, Liang JL, Zhang HT, Xu YF, Zheng HL, Zhou J, Gong JN, Lu ST, Zeng ZS. Glymphatic function and its influencing factors in different glucose metabolism states. World J Diabetes 2024; 15:1537-1550. [PMID: 39099805 PMCID: PMC11292332 DOI: 10.4239/wjd.v15.i7.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized. AIM To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index. METHODS Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE) was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed. RESULTS The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels. CONCLUSION Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Chen Zhao
- Magnetic Resonance Research Collaboration, Siemens Healthineers, Guangzhou 510620, Guangdong Province, China
| | - Jia-Li Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ting Zhang
- Magnetic Resonance Research Collaboration, Siemens Healthineers Ltd., Wuhan 430071, Hubei Province, China
| | - Yi-Fan Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Lei Zheng
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiang-Nian Gong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Ting Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-San Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Drenthen GS, Elschot EP, van der Knaap N, Uher D, Voorter PHM, Backes WH, Jansen JFA, van der Thiel MM. Imaging Interstitial Fluid With MRI: A Narrative Review on the Associations of Altered Interstitial Fluid With Vascular and Neurodegenerative Abnormalities. J Magn Reson Imaging 2024; 60:40-53. [PMID: 37823526 DOI: 10.1002/jmri.29056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Interstitial fluid (ISF) refers to the fluid between the parenchymal cells and along the perivascular spaces (PVS). ISF plays a crucial role in delivering nutrients and clearing waste products from the brain. This narrative review focuses on the use of MRI techniques to measure various ISF characteristics in humans. The complementary value of contrast-enhanced and noncontrast-enhanced techniques is highlighted. While contrast-enhanced MRI methods allow measurement of ISF transport and flow, they lack quantitative assessment of ISF properties. Noninvasive MRI techniques, including multi-b-value diffusion imaging, free-water-imaging, T2-decay imaging, and DTI along the PVS, offer promising alternatives to derive ISF measures, such as ISF volume and diffusivity. The emerging role of these MRI techniques in investigating ISF alterations in neurodegenerative diseases (eg, Alzheimer's disease and Parkinson's disease) and cerebrovascular diseases (eg, cerebral small vessel disease and stroke) is discussed. This review also emphasizes current challenges of ISF imaging, such as the microscopic scale at which ISF has to be measured, and discusses potential focus points for future research to overcome these challenges, for example, the use of high-resolution imaging techniques. Noninvasive MRI methods for measuring ISF characteristics hold significant potential and may have a high clinical impact in understanding the pathophysiology of neurodegenerative and cerebrovascular disorders, as well as in evaluating the efficacy of ISF-targeted therapies in clinical trials. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elles P Elschot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noa van der Knaap
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
13
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
14
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Meng JC, Shen MQ, Lu YL, Feng HX, Chen XY, Xu DQ, Wu GH, Cheng QZ, Wang LH, Gui Q. Correlation of glymphatic system abnormalities with Parkinson's disease progression: a clinical study based on non-invasive fMRI. J Neurol 2024; 271:457-471. [PMID: 37755462 DOI: 10.1007/s00415-023-12004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The glymphatic system is reportedly involved in Parkinson's disease (PD). Based on previous studies, we aimed to confirm the correlation between the glymphatic system and PD progression by combining two imaging parameters, diffusion tensor image analysis along the perivascular space (DTI-ALPS), and enlarged perivascular spaces (EPVS). METHODS Fifty-one PD patients and fifty healthy control (HC) were included. Based on the Hoehn-Yahr scale, the PD group was divided into early-stage and medium-to late-stage. All PD patients were scored using the Unified PD Rating Scale (UPDRS). We assessed the DTI-ALPS indices in the bilateral hemispheres and EPVS numbers in bilateral centrum semiovale (CSO), basal ganglia (BG), and midbrain. RESULTS The DTI-ALPS indices were significantly lower bilaterally in PD patients than in the HC group, and EPVS numbers in any of the bilateral CSO, BG, and midbrain were significantly higher, especially for the medium- to late-stage group and the BG region. In PD patients, the DTI-ALPS index was significantly negatively correlated with age, while the BG-EPVS numbers were significantly positively correlated with age. Furthermore, the DTI-ALPS index was negatively correlated with UPDRS II and III scores, while the BG-EPVS numbers were positively correlated with UPDRS II and III scores. Similarly, the correlation was more pronounced in the medium- to late-stage group. CONCLUSION The DTI-ALPS index and EPVS numbers (especially in the BG region) are closely related to age and PD progression and can serve as non-invasive assessments for glymphatic dysfunction and its interventions in clinical studies.
Collapse
Affiliation(s)
- Jing-Cai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Qiang Shen
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Yan-Li Lu
- Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University(Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Hong-Xuan Feng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Xin-Yi Chen
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Da-Qiang Xu
- Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University(Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Guan-Hui Wu
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Qing-Zhang Cheng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qian Gui
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
16
|
Peng T, Xie Y, Liu F, Lian Y, Xie Y, Ma Y, Wang C, Xie N. The cerebral lymphatic drainage system and its implications in epilepsy. J Neurosci Res 2024; 102:e25267. [PMID: 38284855 DOI: 10.1002/jnr.25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
The central nervous system has long been thought to lack a clearance system similar to the peripheral lymphatic system. Therefore, the clearance of metabolic waste in the central nervous system has been a subject of great interest in neuroscience. Recently, the cerebral lymphatic drainage system, including the parenchymal clearance system and the meningeal lymphatic network, has attracted considerable attention. It has been extensively studied in various neurological disorders. Solute accumulation and neuroinflammation after epilepsy impair the blood-brain barrier, affecting the exchange and clearance between cerebrospinal fluid and interstitial fluid. Restoring their normal function may improve the prognosis of epilepsy. However, few studies have focused on providing a comprehensive overview of the brain clearance system and its significance in epilepsy. Therefore, this review addressed the structural composition, functions, and methods used to assess the cerebral lymphatic system, as well as the neglected association with epilepsy, and provided a theoretical basis for therapeutic approaches in epilepsy.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Cui Wang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
17
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Qin Y, He R, Chen J, Zhou X, Zhou X, Liu Z, Xu Q, Guo JF, Yan XX, Jiang N, Liao W, Taoka T, Wang D, Tang B. Neuroimaging uncovers distinct relationships of glymphatic dysfunction and motor symptoms in Parkinson's disease. J Neurol 2023; 270:2649-2658. [PMID: 36856846 DOI: 10.1007/s00415-023-11594-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Studies of glymphatic dysfunction in Parkinson's disease (PD) patients have attracted much attention in recent years. However, the relationships between glymphatic dysfunction and clinical symptoms remains unclear. OBJECTIVES To determine whether the diffusion tensor image analysis along the perivascular space (DTI-ALPS) affect the severity and types of motor and non-motor symptoms in PD patients. METHODS De novo PD patients and controls who performed both DTI and 123I-DaTscan single photon emission computed tomography (SPECT) scanning were retrieved from the international multicenter Parkinson's Progression Marker Initiative (PPMI) cohort. Glymphatic system was evaluated by the DTI-ALPS. Motor symptoms were assessed by Movement Disorders Society Unified Parkinson's Disease Rating Scale III (MDS-UPDRS-III). The influence of glymphatic activity on motor and non-motor symptoms was explored by multivariate linear regression models. RESULTS A total of 153 PD patients (mean age 60.97 ± 9.47 years; 99 male) and 67 normal controls (mean age 60.10 ± 10.562 years; 43 male) were included. The DTI-ALPS index of PD patients was significantly lower than normal controls (Z = - 2.160, p = 0.031). MDS-UPDRS III score (r = - 0.213, p = 0.008) and subscore for rigidity (r = - 0.177, p = 0.029) were negatively correlated with DTI-ALPS index. The DTI-ALPS index was significantly associated with MDS-UPDRS-III score (β = - 0.160, p = 0.048) and subscore for rigidity (β = - 0.170, p = 0.041) after adjusting for putamen dopamine transporter availability and clinical factors. CONCLUSIONS Our results showed distinct relationships between glymphatic dysfunction and the severity and types of PD motor symptoms, suggesting the potential of DTI-ALPS index as a biomarker for PD motor symptoms.
Collapse
Affiliation(s)
- Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Neurology, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Nana Jiang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Molecular Imaging Research Center of Central, South University, Changsha, 410008, China
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV) Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|