1
|
Liu XM, Shi H, Li W. Review on the potential roles of traditional Chinese medicines in the prevention, treatment, and postoperative recovery of age-related cataract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117786. [PMID: 38253273 DOI: 10.1016/j.jep.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Cataract is the most common cause of blindness worldwide, a visual disorder caused by a clouded lens that seriously affects People's Daily lives. Age-related cataract (ARC) is the most common type of cataract due to long-term combined effects of many factors, and its pathogenesis is varied. At present, the surgery is the main treatment for cataracts, but it is still limited to the prevention, treatment of early cataracts and the postoperative complications care. While, its drug treatments are still in the stage of exploration and research. Traditional Chinese Medicine (TCM), a unique resource in China, is conceived under the guidance of traditional Chinese medicine theory and has little toxicity and side effects, but it has made great progress in the treatment and prevention of ARC. AIM OF THIS REVIEW This review presents an overview of the pathogenesis of ARC in both traditional and modern medicines and summarizes the history and therapeutic effect of TCM on ARC including their formula, crude drugs and active components, and also the other auxiliary methods. METHODS A number of recognized databases like SciFinder, PubMed, Science Direct, Google Scholar, and China National Knowledge Infrastructure (CNKI) were extensively explored by using keywords and phrases such as "cataract", "age-related cataract", "traditional medicine", "ethnopharmacology", "herbs", "medicinal plants", or other relevant terms, and the plants/phytoconstituents that are evaluated in the models of age-related cataract. As well as the current TCM adjuvant therapy used in the clinical treatment were summarized. RESULTS TCM revealed to plays an active role in treating age-related cataract, via multi-pathway and multi-target, and can treat or delay ARC by inhibiting abnormal glucose metabolism, antioxidant damage, inhibiting LEC apoptosis, and so on, which is in concordance with the good effects of the global use of TCM in clinical application. Concerning the early prevention and treatment of cataract and postoperative complications, TCM and auxiliary methods remain to achieve better clinical effects. CONCLUSION ARC belongs to the category of "Yuan Yi Nei Zhang" in TCM theory, showing that there are many causes of ARC including aging, and kidney-yang, spleen, sperm and blood deficiencies. At the same time, the viscera gradually decline, as well as yin or yang progressively become weak, especially in the elder people. So, TCM could be mainly based on liver, kidney, and spleen syndrome differentiation, personalizing diagnosis and treatment, following multiple targets, regulating fundamentally yin and yang, and thus justifying the advantages of Chinese medicine in the prevention and treatment of ARC.
Collapse
Affiliation(s)
- Xiao-Min Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China
| | - Hui Shi
- The First Hospital, Jilin University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China.
| |
Collapse
|
2
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
3
|
Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti-Aging Agents. Molecules 2023; 28:molecules28041728. [PMID: 36838716 PMCID: PMC9963045 DOI: 10.3390/molecules28041728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a complex physiological process that can be accelerated by chemical (high blood glucose levels) or physical (solar exposure) factors. It is accompanied by the accumulation of altered molecules in the human body. The accumulation of oxidatively modified and glycated proteins is associated with inflammation and the progression of chronic diseases (aging). The use of antiglycating agents is one of the recent approaches in the preventive strategy of aging and natural compounds seem to be promising candidates. Our study focused on the anti-aging effect of the flavonoid hesperetin, its glycoside hesperidin and its carbohydrate moieties rutinose and rhamnose on young and physiologically aged normal human dermal fibroblasts (NHDFs). The anti-aging activity of the test compounds was evaluated by measuring matrix metalloproteinases (MMPs) and inflammatory interleukins by ELISA. The modulation of elastase, hyaluronidase, and collagenase activity by the tested substances was evaluated spectrophotometrically by tube tests. Rutinose and rhamnose inhibited the activity of pure elastase, hyaluronidase, and collagenase. Hesperidin and hesperetin inhibited elastase and hyaluronidase activity. In skin aging models, MMP-1 and MMP-2 levels were reduced after application of all tested substances. Collagen I production was increased after the application of rhamnose and rutinose.
Collapse
|
4
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
5
|
Sulastri E, Zubair MS, Lesmana R, Mohammed AFA, Wathoni N. Development and Characterization of Ulvan Polysaccharides-Based Hydrogel Films for Potential Wound Dressing Applications. Drug Des Devel Ther 2021; 15:4213-4226. [PMID: 34675484 PMCID: PMC8502111 DOI: 10.2147/dddt.s331120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Ulvan is a natural polymer and type of sulfated polysaccharides from green seaweed that could have potential as a candidate for wound dressing material based on the support of its biopolymer characteristics such as antioxidant and antimicrobial activities. Objective In this study, we developed and prepared three different hydrogel films to explore the potency of ulvan for wound dressing application. Methods Ulvan hydrogel films were prepared by the facile method through ionic crosslinking with boric acid and added glycerol as a plasticizer. The films were evaluated in regard to swelling degree, water vapor transmission (WVTR), Fourier transform infrared (FTIR), powder x-ray diffractometry (P-XRD), scanning electron microscopy (SEM), mechanical properties, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), antimicrobial, and antioxidant activity. Results The hydrogel films showed that the different concentration of ulvan in the formula affects the characteristics of the hydrogel film. The higher the concentration of ulvan in UHF, the higher the value of viscosity (201±13.45 to 689±62.23 cps for UHF5 to UHF10), swelling degree (82% to 130% for UHF5 to UHF10 at 1 h), moisture content (24%±1.94% to 18.4%±0.51 for UHF5 to UHF10), and the WVTR were obtained in the range 1856–2590g/m2/24h. Meanwhile, the SEM showed porous hydrogel film. Besides, all hydrogel films can reduce hydroxyl radicals and inhibit gram-positive and negative bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus epidermidis). Conclusion The swelling behavior and WVTR of these films are great and could have potential as a wound dressing biomaterial, supported by their antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94119, Indonesia
| | - Muhammad Sulaiman Zubair
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94119, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
6
|
Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Baawad A, Rice C, Hamil T, Murphy K, Park J, Kim DS. Molecular weight effects of low acyl gellan gum on antioxidant capacity and rheological properties. J Food Sci 2021; 86:4275-4287. [PMID: 34435362 DOI: 10.1111/1750-3841.15887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023]
Abstract
The current study investigated the antioxidant capacity of enzymatically cleaved low acyl gellan gum (LA-GAGR) fragments, named midi-GAGR (MWv : 1.2 × 105 Da) and mini-GAGR (MWv : 2.5 × 104 Da). Three different methods-hydroxide assay, superoxide assay, and DPPH assay-were used to measure the antioxidant capacity of the low acyl gellan gum fragments. Both mini-GAGR and midi-GAGR showed similar antioxidant capacities, 27.1% and 25.6%, respectively, for hydroxide radicals, whereas ascorbic acid showed 9.8%. For superoxide radicals, the fragments scavenged 41.7% (mini) and 35.6% (midi) of free radicals compared to 10.6% removal by ascorbic acid. Mini- and midi-GAGR displayed modest scavenging capabilities with DPPH radicals (8.5% and 6.6%, respectively) as compared to ascorbic acid (96.3%). Both midi- and mini-GAGR showed less gel-like behaviors than LA-GAGR. Midi-GAGR was observed to have a transition from liquid to gel at 63 rad/s. PRACTICAL APPLICATION: The results in the manuscript are helpful when gellan gum and its derivatives are directly applied to food processing as a dietary fiber supplement or a stabilizer for functional beverages. The antioxidant capacity results can be used to promote the functionality of gellan gum as a food additive and for controlling cell adhesion and growth on gellan gum scaffolds. The rheology results will be useful for synthesis of scaffolds for bone tissue generation and facilitating clinical treatments when gellan gum is injected as an adsorbent or a filler for treating bone fractures. In the pharmaceutical industry, they are useful when controlling the therapeutic effects of drug delivery systems.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Clayton Rice
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Kelsey Murphy
- Department of Neurosciences, University of Toledo, Ohio, USA
| | - Joshua Park
- Department of Neurosciences, University of Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| |
Collapse
|
8
|
Fournière M, Bedoux G, Lebonvallet N, Leschiera R, Le Goff-Pain C, Bourgougnon N, Latire T. Poly- and Oligosaccharide Ulva sp. Fractions from Enzyme-Assisted Extraction Modulate the Metabolism of Extracellular Matrix in Human Skin Fibroblasts: Potential in Anti-Aging Dermo-Cosmetic Applications. Mar Drugs 2021; 19:md19030156. [PMID: 33802739 PMCID: PMC8002389 DOI: 10.3390/md19030156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but their biological activity on human dermal fibroblast extracellular matrix (ECM) is poorly reported. In this work, the regulation of ECM has been investigated for the first time at both proteomic and transcriptomic levels in normal human skin dermal fibroblasts, after 48 h of incubation with poly- and oligosaccharide fractions from Ulva sp. obtained after enzyme-assisted extraction and depolymerization. Cell proliferation enhancement (up to +68%) without exhibiting any cytotoxic effect on fibroblasts was demonstrated at 50 and 1000 µg/mL by both fractions. At the proteomic level, polysaccharide fractions at 1000 µg/mL enhanced the most the synthesis of glycosaminoglycans (GAGs, up to +57%), total collagen, especially types I (up to +217%) and III, as well as the synthesis and activity of MMP-1 (Matrix Metalloproteinase-1, up to +309%). In contrast, oligosaccharide fractions had no effect on GAGs synthesis but exhibited similarities for collagens and MMP-1 regulation. At the transcriptomic level, the decrease of COL1A1 and COL1A2 expression, and increase of COL3A1 and MMP-1 expression, confirmed the modulation of ECM metabolism by both fractions. Our research emphasizes that poly- and oligosaccharide Ulva sp. fractions exhibit interesting biological activities and supports their potential use in the area of skin renewal for anti-aging dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
- Correspondence:
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | | | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
| |
Collapse
|
9
|
Madany MA, Abdel-Kareem MS, Al-Oufy AK, Haroun M, Sheweita SA. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int J Biol Macromol 2021; 177:401-412. [PMID: 33577821 DOI: 10.1016/j.ijbiomac.2021.02.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/19/2023]
Abstract
As a biocompatible polymer, ulvan has applications in countless fields. Therefore, the following study intends to extract ulvan from Ulva fasciata, emphasizing its use for biomedical and industrial applications in the manufacture of nanofibrous webs. The extracted ulvan was characterized using FT-IR, DSC, XRD, GPC, and NMR. The extracted ulvan's FT-IR spectra confirmed that it is a sulfated polysaccharide. The HPLC analysis showed that the extracted ulvan is composed of rhamnose, xylose, glucose and glucuronic acid. NMR showed that the proton chemical shifts at 1.3 are due to methyl protons of rhamnose 3-sulfate in the ulvan samples. The X-ray diffractograms suggested that the extracted ulvan is semi-crystalline polymer with major crystalline reflection at 2θ of 29.4°. Deionized water has been successfully used to produce ulvan/polyvinyl alcohol (ulvan/PVA) nanofibers as an eco-friendly solvent. It was found that the ulvan-to-PVA (1:2) ratio results in nanofiber that is well handled and smooth. In addition to pretreated ones, the ulvan extracted without organic solvent pretreatment showed bead free nanofibers. It is concluded that pretreatment with organic solvent in ulvan extraction, particularly in the manufacture of nanofibers, is not recommended. In addition, the resulting nanofibrous mat has sufficient mechanical properties for various applications to be incorporated.
Collapse
Affiliation(s)
- Marwa A Madany
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Egypt.
| | | | - Affaf K Al-Oufy
- New Advanced Materials & Nanotechnology Research Lab NNRL, Faculty of Engineering, Alexandria University, Egypt; Department of Materials & Manufacturing, Faculty of Engineering, Galala University, Galala City, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Salah A Sheweita
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Egypt; Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Wei J, Zhang L, Liu J, Pei D, Wang N, Wang H, Di D, Liu Y. Protective effect of Lycium barbarum polysaccharide on ethanol-induced injury in human hepatocyte and its mechanism. J Food Biochem 2020; 44:e13412. [PMID: 32744344 DOI: 10.1111/jfbc.13412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this research is to study the effect of Lycium barbarum polysaccharide on ethanol-induced liver injury and its mechanism. The cell survival rate, the apoptosis rate, and the intracellular ROS level was detected by MTT assay, flow cytometry, laser confocal microscopy, and fluorescence spectrophotometry, respectively. The antioxidative indices were determined by ELISA kits and the protein level was detected by western blot. The result showed Lycium barbarum polysaccharide could protect ethanol-induced cell injury by reducing cell apoptosis and regulating the levels of indicators related to oxidative stress, such as ROS, MDA, SOD, etc. In addition, LBP could increase the nuclear expression of Nrf2 protein and significantly up-regulate the expression levels of Nrf2 protein and its downstream proteins, such as HO-1, NQO1, and GCLC in the cell nucleus. Therefore, Lycium barbarum polysaccharide has a protective effect on ethanol-induced liver cell injury and it plays the role in cell apoptosis pathway and oxidative stress pathway. PRACTICAL APPLICATIONS: Lycium barbarum is a kind of food that can be used as food and medicine in China. The result showed that Lycium barbarum polysaccharide could protect ethanol-induced liver cell injury, which is beneficial to the application of LBP in functional food.
Collapse
Affiliation(s)
- Jianteng Wei
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Linghao Zhang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jianfei Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Dong Pei
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Ningli Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Han Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P.R. China
- Center of Resource Chemical & New Material, Qingdao, P.R. China
| | - Yewei Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
De Pieri A, Rana S, Korntner S, Zeugolis DI. Seaweed polysaccharides as macromolecular crowding agents. Int J Biol Macromol 2020; 164:434-446. [PMID: 32679331 DOI: 10.1016/j.ijbiomac.2020.07.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive. Herein, we evaluated the biophysical properties of various concentrations of different seaweed in origin sulphated polysaccharides and their effect on human adipose derived stem cell cultures. Carrageenan, possibly due to its high sulphation degree, exhibited the highest negative charge values. No correlation was observed between the different concentrations of the crowders and charge, polydispersity index, hydrodynamic radius and fraction volume occupancy across all crowders. None of the crowders, but arabinogalactan, negatively affected cell viability. Carrageenan, fucoidan, galactofucan and ulvan increased extracellular matrix (especially collagen type I and collagen type V) deposition. Carrageenan induced the highest osteogenic effect and galactofucan and fucoidan demonstrated the highest chondrogenic effect. All crowders were relatively ineffective with respect to adipogenesis. Our data highlight the potential of sulphated seaweed polysaccharides for tissue engineering purposes.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Shubhasmin Rana
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Stefanie Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
12
|
Kidgell JT, Glasson CRK, Magnusson M, Vamvounis G, Sims IM, Carnachan SM, Hinkley SFR, Lopata AL, de Nys R, Taki AC. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int J Biol Macromol 2020; 150:839-848. [PMID: 32057850 DOI: 10.1016/j.ijbiomac.2020.02.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 11/25/2022]
Abstract
Ulvan, a sulfated polysaccharide extracted from the green seaweed genus Ulva, has bioactive properties including an immunomodulating capacity. The immunomodulatory capacity of ulvan from Ulva ohnoi, however, has not been assessed in detail. We depolymerised purified ulvan from U. ohnoi to obtain a range of molecular weight fractions (Mw 7, 9, 13, 21, 209 kDa), which were characterised by constituent sugar analysis, SEC-MALLS, and NMR. Ulvan fractions contained 48.8-54.7 mol% rhamnose, 32.5-35.9 mol% glucuronic acid, 4.5-7.3 mol% iduronic acid, and 3.3-5.6 mol% xylose. 1H and 13C NMR was consistent with hydrolysis occurring at the anomeric centre without further modification to the oligosaccharide structure. The in vitro immunomodulatory effect of ulvan fractions was quantified by measuring levels of inflammatory-mediating signalling molecules released from LPS-stimulated RAW264.7 murine macrophages. All ulvan fractions showed no toxicity on RAW264.7 cells at concentrations below 100 μg mL-1 over 48 h. Secreted interleukin-10 and prostaglandin E2 demonstrated an anti-inflammatory effect by higher molecular weight ulvan fractions at 100 μg mL-1. To a lesser extent, these fractions also enhanced the LPS-induced inflammation through minor increases of IL-1β and IL-6. This study confirms that ulvan from U. ohnoi has a mild in vitro immunomodulatory effect.
Collapse
Affiliation(s)
- Joel T Kidgell
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Science and Engineering, James Cook University, Townsville, Australia.
| | | | - Marie Magnusson
- School of Science, University of Waikato, Tauranga, New Zealand
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Rocky de Nys
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Fournière M, Latire T, Lang M, Terme N, Bourgougnon N, Bedoux G. Production of Active Poly- and Oligosaccharidic Fractions from Ulva sp. by Combining Enzyme-Assisted Extraction (EAE) and Depolymerization. Metabolites 2019; 9:E182. [PMID: 31547343 PMCID: PMC6780239 DOI: 10.3390/metabo9090182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Data on fractionation and depolymerization of the matrix ulvan polysaccharides, and studies on the biological activities on skin cells, are very scarce. In this work, crude ulvans were produced by using EAE (enzyme-assisted extraction) and compared to maceration (an established procedure). After different fractionation procedures-ethanolic precipitation, dialysis, or ammonium sulfate precipitation-the biochemical composition showed that EAE led to an increased content in ulvans. Coupling EAE to sulfate ammonium precipitation led to protein enrichment. Oligosaccharides were obtained by using radical depolymerization by H2O2 and ion-exchange resin depolymerization. Sulfate groups were partially cleaved during these chemical treatments. The potential bioactivity of the fractions was assessed using a lipoxygenase inhibition assay for anti-inflammatory activity and a WST-1 assay for human dermal fibroblast viability and proliferation. All ulvans extracts, poly- and oligosaccharidic fractions from EAE, expanded the fibroblast proliferation rate up to 62%. Our research emphasizes the potential use of poly- and oligosaccharidic fractions of Ulva sp. for further development in cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Thomas Latire
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Marie Lang
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| |
Collapse
|
14
|
Chen X, Yue Z, Winberg PC, Dinoro JN, Hayes P, Beirne S, Wallace GG. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci 2019; 7:3497-3509. [PMID: 31290861 DOI: 10.1039/c9bm00480g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An array of biological properties is demonstrated in the category of extracts broadly known as ulvans, including antibacterial, anti-inflammatory and anti-coagulant activities. However, the development of this category in biomedical applications is limited due to high structural variability across species and a lack of consistent and scalable sources. In addition, the modification and formulation of these molecules is still in its infancy with regard to progressing to product development. Here, a sulfated and rhamnose-rich, xylorhamno-uronic acid (XRU) extract from the cell wall of a controlled source of cultivated Australian ulvacean macroalgae resembles mammalian connective glycosaminoglycans. It is therefore a strong candidate for applications in wound healing and tissue regeneration. This study targets the development of polysaccharide modification for fabrication of 3D scaffolds for skin cell (fibroblast) culture. The XRU extract is methacrylated and UV-crosslinked to produce hydrogels with tuneable mechanical properties. The hydrogels demonstrate high cell viability and support cell proliferation over 14 days, which are far more functional than comparable alginate gels. Importantly, an XRU-based bioink is developed for extrusion printing 3D constructs both with and without cell encapsulation. These results highlight the close to product potential of this rhamnose-rich XRU extract as a promising biomaterial toward wound healing. Future studies should be focused on in-depth in vitro characterizations to examine the role of the material in dermal extracellular matrix (ECM) secretion of 3D printed structures, and in vivo characterizations to assess its capacity in supporting wound healing.
Collapse
Affiliation(s)
- Xifang Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Pia C Winberg
- Venus Shell Systems Pty Ltd, Mundamia, NSW 2540, Australia and School of Medicine, Science, Medicine & Health, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jeremy N Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Patricia Hayes
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
15
|
Pageon H, Azouaoui A, Zucchi H, Ricois S, Tran C, Asselineau D. Potentially beneficial effects of rhamnose on skin ageing: an in vitro and in vivo study. Int J Cosmet Sci 2019; 41:213-220. [PMID: 30845349 DOI: 10.1111/ics.12523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Recent findings showed that skin ageing preferentially affects human papillary dermal fibroblasts suggesting that the papillary dermis represents a critical zone altered by skin ageing. Based on these findings, we investigated the potential anti-ageing effect of rhamnose. METHODS We investigated the potential anti-ageing effect of rhamnose using in vitro reconstructed skin containing fibroblasts obtained either from young or old donors, and in vivo clinical investigation. RESULTS We detected positive effects of rhamnose in both epidermal and dermal compartments of in vitro reconstructed skin. Moreover, we were able to show that such in vitro findings were also obtained in vivo including an effect on collagen IV and procollagen I production. CONCLUSION We provide evidence that rhamnose has a potentially beneficial effect on papillary dermis and dermal-epidermal junction, both of the areas which are affected by skin ageing.
Collapse
Affiliation(s)
- H Pageon
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| | - A Azouaoui
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| | - H Zucchi
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| | - S Ricois
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| | - C Tran
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| | - D Asselineau
- L'Oréal Research and Innovation, L'Oréal, 1 avenue Eugène Schueller, 93360, Aulnay-sous-Bois, France
| |
Collapse
|
16
|
|
17
|
Mei X, Lan M, Cui G, Zhang H, Zhu W. Caerulomycins from Actinoalloteichus cyanogriseus WH1-2216-6: isolation, identification and cytotoxicity. Org Chem Front 2019. [DOI: 10.1039/c9qo00685k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SAR study of 42 caerulomycins from A. cyanogriseus revealed that 6-aldoxime and 4-O-glycosidation are respectively essential for their activity and selectivity.
Collapse
Affiliation(s)
- Xiangui Mei
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Mengmeng Lan
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Guodong Cui
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Hongwei Zhang
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Weiming Zhu
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| |
Collapse
|
18
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
19
|
Tanna B, Choudhary B, Mishra A. Metabolite profiling, antioxidant, scavenging and anti-proliferative activities of selected tropical green seaweeds reveal the nutraceutical potential of Caulerpa spp. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zhu LF, Yao ZC, Ahmad Z, Li JS, Chang MW. Synthesis and Evaluation of Herbal Chitosan from Ganoderma Lucidum Spore Powder for Biomedical Applications. Sci Rep 2018; 8:14608. [PMID: 30279587 PMCID: PMC6168458 DOI: 10.1038/s41598-018-33088-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Chitosan is an extremely valuable biopolymer and is usually obtained as a byproduct from the shells of crustaceans. In the current work, chitosan is obtained from an herbal source (Ganoderma lucidum spore powder (GLSP)) for the first time. To show this, both standard (thermochemical deacetylation, (TCD)) and emerging (ultrasound-assisted deacetylation (USAD)) methods of chitosan preparation were used. The obtained chitosan was characterized by elemental analysis, XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy) and thermogravimetric measurements. The process resulted in chitosan possessing comparable values of DD, [η] and [Formula: see text] to the commercial product. Chitosan obtained via both processes (TCD and USAD) displayed excellent biocompatibility; although the USAD prepared biopolymer exhibited significantly improved fibroblast (L929 cell) viability and enhanced antibacterial zones for both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The findings of new herbal chitosan mark key developments of natural biomaterials; marking a potential shift from conventional sea-based organisms.
Collapse
Affiliation(s)
- Li-Fang Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhi-Cheng Yao
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Jing-Song Li
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
21
|
Shori AB, Rashid F, Baba AS. Effect of the addition of phytomix-3+ mangosteen on antioxidant activity, viability of lactic acid bacteria, type 2 diabetes key-enzymes, and sensory evaluation of yogurt. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications. Polymers (Basel) 2018; 10:polym10040415. [PMID: 30966450 PMCID: PMC6415257 DOI: 10.3390/polym10040415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Skin autografts are in great demand due to injuries and disease, but there are challenges using live tissue sources, and synthetic tissue is still in its infancy. In this study, an electrocompaction method was applied to fabricate the densely packed and highly ordered collagen/sulfated xylorhamnoglycuronan (SXRGlu) scaffold which closely mimicked the major structure and components in natural skin tissue. The fabricated electrocompacted collagen/SXRGlu matrices (ECLCU) were characterized in terms of micromorphology, mechanical property, water uptake ability and degradability. The viability, proliferation and morphology of human dermal fibroblasts (HDFs) cells on the fabricated matrices were also evaluated. The results indicated that the electrocompaction process could promote HDFs proliferation and SXRGlu could improve the water uptake ability and matrices' stability against collagenase degradation, and support fibroblast spreading on the ECLCU matrices. Therefore, all these results suggest that the electrocompacted collagen/SXRGlu scaffold is a potential candidate as a dermal substitute with enhanced biostability and biocompatibility.
Collapse
|
23
|
Labre F, Mathieu S, Chaud P, Morvan PY, Vallée R, Helbert W, Fort S. DMTMM-mediated amidation of alginate oligosaccharides aimed at modulating their interaction with proteins. Carbohydr Polym 2018; 184:427-434. [DOI: 10.1016/j.carbpol.2017.12.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/26/2017] [Indexed: 02/02/2023]
|
24
|
Gao Y, Wei Y, Wang Y, Gao F, Chen Z. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent. Aging Dis 2017; 8:778-791. [PMID: 29344416 PMCID: PMC5758351 DOI: 10.14336/ad.2017.0725] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine.
Collapse
Affiliation(s)
- Yanjie Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Yifo Wei
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Yuqing Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Fang Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Zhigang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| |
Collapse
|
25
|
Glasson CR, Sims IM, Carnachan SM, de Nys R, Magnusson M. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Adrien A, Bonnet A, Dufour D, Baudouin S, Maugard T, Bridiau N. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr Polym 2016; 157:1306-1314. [PMID: 27987837 DOI: 10.1016/j.carbpol.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/23/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Ulvans from Ulva sp. were tested for their potential cosmetic properties on human dermal fibroblasts. The crude ulvans (ULVAN-01, 57kDa), extracted using a patented acid- and solvent-free process, were subjected to depolymerization using ion exchange resin to obtain a low molecular weight ulvan (ULVAN-DEP, 4kDa). The biochemical characterization and UHPLC-HRMS analyses of these extracted ulvans showed that they were of high purity and predominantly composed of a repeated ulvanobiouronic acid disaccharide. Fibroblast proliferation, as well as hyaluronan and collagen release were assessed, demonstrating that ULVAN-01 reduced fibroblast proliferation rate while ULVAN-DEP had no significant effect. Both ulvans were ineffective to induce collagen production but induced a significant increase in hyaluronan production, with a strong influence of the molecular weight. Thus, crude and depolymerized ulvans had different metabolic activities on dermal fibroblasts, which makes them promising to envisage further development in the skin care field.
Collapse
Affiliation(s)
- Amandine Adrien
- Université de La Rochelle, UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Département de Biotechnologies, Avenue Michel Crépeau, 17042 La Rochelle, France; SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 Rochelle, France
| | - Antoine Bonnet
- Université de La Rochelle, UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Département de Biotechnologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Delphine Dufour
- SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 Rochelle, France
| | - Stanislas Baudouin
- SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 Rochelle, France
| | - Thierry Maugard
- Université de La Rochelle, UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Département de Biotechnologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Nicolas Bridiau
- Université de La Rochelle, UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Département de Biotechnologies, Avenue Michel Crépeau, 17042 La Rochelle, France.
| |
Collapse
|
27
|
Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Marseglia A, Licari A, Agostinis F, Barcella A, Bonamonte D, Puviani M, Milani M, Marseglia G. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: a randomized, placebo controlled trial. Pediatr Allergy Immunol 2015. [PMID: 24750568 PMCID: PMC4260143 DOI: 10.1111/pai.12185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background A non-steroidal, anti-inflammatory moisturizing cream containing rhamnosoft, ceramides, and L-isoleucine (ILE) (pro-AMP cream) has been recently developed for the specific treatment of atopic eczema (AE) of the face. In this trial, we evaluated the clinical efficacy and tolerability of pro-AMP cream in the treatment of facial AE in children in comparison with an emollient cream. Methods In a randomized, prospective, assessor-blinded, parallel groups (2:1) controlled trial, 107 children (72 allocated to pro-AMP cream and 35 allocated to control group) with mild-to-moderate chronic AE of the face were enrolled. Treatments were applied twice daily for a 6-week period. Facial Eczema Severity Score (ESS) was evaluated at baseline, week 3, and week 6, by an assessor unaware of treatment allocation. Investigator's Global Assessment (IGA) score was assessed at week 3 and at week 6. Tolerability was evaluated at week 3 and at week 6 using a 4-point score (from 0: low tolerability to 3: very good tolerability). Results At baseline ESS, mean (SD) was 6.1 (2.4) in the pro-AMP cream group and 5.3 (3) in the control group. In the pro-AMP group, in comparison with baseline, ESS was significantly reduced to 2.5 (−59%) after 3 wks and to 1.0 (−84%) at week 6 (p = 0.0001). In the control group, ESS was reduced to 3 (−42%) at week 2 and to 2.6 (−50%) at week 6. At week 6, ESS in pro-AMP cream was significantly lower than the control group (1.0 vs. 2.6; p = 0.001). Both products were well tolerated. Conclusion Pro-AMP cream has shown to be effective in the treatment of mild-to-moderate chronic lesion of AE of the face. Clinical efficacy was greater in comparison with an emollient cream. (Clinical trial Registry: NTR4084).
Collapse
Affiliation(s)
| | - Amelia Licari
- Policlinico San Matteo, Pediatric ClinicPavia, Italy
| | | | | | - Domenico Bonamonte
- Department of Biomedical Science and Human Oncology – Section of Dermatology, University of Bari “Aldo Moro”Bari, Italy
| | - Mario Puviani
- Ospedale Di Sassuolo, Struttura Semplice Di Dermatologia E Dipartimento Di Dermatologia ChirurgicaSassuolo, Italy
| | | | | |
Collapse
|
29
|
Effects of polysaccharides from abalone (Haliotis discus hannai Ino) on HepG2 cell proliferation. Int J Biol Macromol 2014; 66:354-61. [DOI: 10.1016/j.ijbiomac.2014.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/07/2014] [Accepted: 01/17/2014] [Indexed: 11/19/2022]
|
30
|
Marseglia A, Licari A, Agostinis F, Barcella A, Bonamonte D, Puviani M, Milani M, Marseglia G. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: a randomized, placebo controlled trial. Pediatr Allergy Immunol 2014; 25:271-5. [PMID: 24750568 PMCID: PMC4260143 DOI: 10.1111/pai.12227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A non-steroidal, anti-inflammatory moisturizing cream containing rhamnosoft, ceramides, and L-isoleucine (ILE) (pro-AMP cream) has been recently developed for the specific treatment of atopic eczema (AE) of the face. In this trial, we evaluated the clinical efficacy and tolerability of pro-AMP cream in the treatment of facial AE in children in comparison with an emollient cream. METHODS In a randomized, prospective, assessor-blinded, parallel groups (2:1) controlled trial, 107 children (72 allocated to pro-AMP cream and 35 allocated to control group) with mild-to-moderate chronic AE of the face were enrolled. Treatments were applied twice daily for a 6-week period. Facial Eczema Severity Score (ESS) was evaluated at baseline, week 3, and week 6, by an assessor unaware of treatment allocation. Investigator’s Global Assessment (IGA) score was assessed at week 3 and at week 6. Tolerability was evaluated at week 3 and at week 6 using a4-point score (from 0: low tolerability to 3: very good tolerability). RESULTS At baseline ESS, mean (SD) was 6.1 (2.4) in the pro-AMP cream group and 5.3 (3) in the control group. In the pro-AMP group, in comparison with baseline, ESS was significantly reduced to 2.5 (-59%) after 3 wks and to 1.0 (-84%) at week 6 (p = 0.0001). In the control group, ESS was reduced to 3 (-42%) at week 2 and to 2.6(-50%) at week 6. At week 6, ESS in pro-AMP cream was significantly lower than the control group (1.0 vs. 2.6; p = 0.001). Both products were well tolerated. CONCLUSION Pro-AMP cream has shown to be effective in the treatment of mild-to moderate chronic lesion of AE of the face. Clinical efficacy was greater in comparison with an emollient cream. ( CLINICAL TRIAL REGISTRY NTR4084).
Collapse
Affiliation(s)
| | - Amelia Licari
- Policlinico San Matteo, Pediatric ClinicPavia, Italy
| | | | | | - Domenico Bonamonte
- Department of Biomedical Science and Human Oncology – Section of Dermatology, University of Bari “Aldo Moro”Bari, Italy
| | - Mario Puviani
- Ospedale Di Sassuolo, Struttura Semplice Di Dermatologia E Dipartimento Di Dermatologia ChirurgicaSassuolo, Italy
| | | | | |
Collapse
|
31
|
Grillon C, Matejuk A, Nadim M, Lamerant-Fayel N, Kieda C. News on microenvironmental physioxia to revisit skin cell targeting approaches. Exp Dermatol 2012; 21:723-8. [PMID: 22882247 DOI: 10.1111/j.1600-0625.2012.01551.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 12/11/2022]
Abstract
The skin is a multifunctional organ and a first line of defense actively protecting from environmental stress caused by injury, microbial treat, UV irradiation and environmental toxins. Diverse cutaneous cell types together with extracellular matrix elements and factors create a dynamic scene for cellular communication crucial in vital processes such as wound healing, inflammation, angiogenesis, immune response. Direct functional success of skin equilibrium depends on its microenvironment settings and particularly the local oxygen tension. Indeed, skin entire milieu is characterized by and highly dependent on its low oxygen tension called physioxia as emphasized in this review. In the context of skin physioxia, we review and propose here new approaches to minimize age-related changes in skin state and function. We particularly emphasize carbohydrate-mediated interactions and new 3D models of engineered skin substitutes. We highlight newly emerged tools and targets including stem cells, miRNAs, matrix metalloproteinases, mitochondria and natural antioxidants that are promising in prevention of skin ageing and disease restraint. In the era of advanced dermatology, new attempts are bringing us closer to 'well being' perception.
Collapse
|
32
|
Peng Z, Liu M, Fang Z, Wu J, Zhang Q. Composition and cytotoxicity of a novel polysaccharide from brown alga (Laminaria japonica). Carbohydr Polym 2012; 89:1022-6. [PMID: 24750908 DOI: 10.1016/j.carbpol.2012.03.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 02/02/2023]
Abstract
A novel polysaccharide WPS-2-1, with an average molecular weight of 80 kDa, was purified from aqueous extracts of Laminaria japonica. Monosaccharides analysis revealed that WPS-2-1 was composed of mannose, rhamnose and fucose with a molar ratio of 1.0:2.3:1.2. Analysis by periodate oxidation-Smith degradation indicated that WPS-2-1 had a backbone of array by (1→4)-glycosidic linkages. Cytotoxicity assay showed that WPS-2-1 presented significantly higher antitumor activities against A375 and BGC823 cells with a dose-dependent manner, and exhibited lower cytotoxicity to vascular smooth muscle cells. The results suggested that WPS-2-1 should be explored as a potential antitumor agent with low toxicity.
Collapse
Affiliation(s)
- Zhenfei Peng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China; College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Min Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China; College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Zhexiang Fang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Jiulin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China; Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
33
|
Structural characterisation and anti-ageing activity of extracellular polysaccharide from a strain of Lachnum sp. Food Chem 2012; 132:338-43. [DOI: 10.1016/j.foodchem.2011.10.087] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 10/05/2011] [Accepted: 10/08/2011] [Indexed: 11/19/2022]
|
34
|
Abstract
Skin is the most voluminous organ of the body. It assumes several important physiological functions and represents also a "social interface" between an individual and other members of society. This is the main reason its age-dependent modifications are in the forefront of dermatological research and of the "anti-aging" cosmetic industry. Here we concentrate on some aspects only of skin aging, as far as the cellular and extracellular matrix components of skin are concerned. Most well studied mechanisms of skin aging can be situated at the postgenetic level, both epigenetic and post-translational mechanisms being involved. Some of these mechanisms will be reviewed as well as the capacity of fucose- and rhamnose-rich oligo- and polysaccharides (FROP and RROP) to counteract several of the mechanisms involved in skin aging.
Collapse
Affiliation(s)
- L Robert
- Laboratoire de recherche ophtalmologique, université Paris-5, Hôtel-Dieu, 1, place du Parvis-Notre-Dame, 75181 Paris cedex 04, France.
| | | | | |
Collapse
|
35
|
Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL. Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm 2012; 426:76-81. [PMID: 22281048 DOI: 10.1016/j.ijpharm.2012.01.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
The polysaccharide ulvan, composed of sulphated rhamnose, glucoronic and iduronic acids was used to produce polymeric membranes by solvent casting. As ulvan is soluble in water, a cross-linking step was necessary to render the membrane insoluble in water and stable at physiological conditions. Cross-linked ulvan membranes were characterized by FTIR, SEM, swelling behaviour was investigated and the mechanical performance assessed by quasi-static tensile testing. Furthermore, the ability and mechanism of sustained release of a model drug from ulvan membranes was investigated. Produced membranes revealed remarkable ability to uptake water (up to ∼1800% of its initial dry weight) and increased mechanical performance (1.76 MPa) related with cross-linking. On the other hand, medicated ulvan dressings demonstrate the potential as drug delivery devices. Using a model drug we have observed an initial steady release of the drug - of nearly 49% - followed by slower and sustained release up to 14 days. The properties of ulvan membranes herein revealed suggest a great potential of this natural sulphated polysaccharide as a wound dressing.
Collapse
Affiliation(s)
- Anabela Alves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Associated Laboratory, Portugal.
| | - Elisabete D Pinho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Associated Laboratory, Portugal
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Associated Laboratory, Portugal
| | - Rui A Sousa
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Associated Laboratory, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Associated Laboratory, Portugal
| |
Collapse
|
36
|
Robert L, Robert AM, Labat-Robert J. The Maillard reaction – Illicite (bio)chemistry in tissues and food. ACTA ACUST UNITED AC 2011; 59:321-8. [DOI: 10.1016/j.patbio.2011.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Faury G, Molinari J, Rusova E, Mariko B, Raveaud S, Huber P, Velebny V, Robert A, Robert L. Receptors and aging: Structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca2+-mobilization and gene-expression profiles. Arch Gerontol Geriatr 2011; 53:106-12. [DOI: 10.1016/j.archger.2010.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
|
38
|
Herane MI, Fuenzalida H, Zegpi E, De Pablo C, Espadas MJ, Trullás C, Mirada A, Martin GG. Specific gel-cream as adjuvant to oral isotretinoin improved hydration and prevented TEWL increase--a double-blind, randomized, placebo-controlled study. J Cosmet Dermatol 2010; 8:181-5. [PMID: 19735515 DOI: 10.1111/j.1473-2165.2009.00455.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hydrating and emollient products are often recommended to patients under isotretinoin therapy to control the most frequent mucocutaneous side effects and to improve adherence to treatment. AIMS To assess, using noninvasive biophysical tests, the clinical and instrumental effectiveness of a hydrating gel-cream compared with placebo as an adjuvant to isotretinoin for treatment of facial skin in patients with inflammatory acne. METHODS Prospective, double-blind, randomized study, using MULTI SKIN MC750, on the adjuvant effect of a hydrating gel-cream for acne (active product) vs. a gel-cream without active substances (placebo). Follow-up lasted 3 months. RESULTS Sixty-six patients were included. Thirty-four were administered the active product, and 32 placebo. Though the number of lesions fell significantly in both groups, the mean number of papules on day 30 was significantly lower in the active product group. The active product group showed a significant increase in hydration, while the placebo group showed a significant increase in transepidermal water loss (TEWL). Seborrhoea decreased significantly in both groups; there were no differences between them. CONCLUSIONS Compared with placebo, the specific gel-cream with active products as an adjuvant to oral isotretinoin improved hydration, prevented TEWL increase, and reduced inflammatory acne lesions after 30 days.
Collapse
|
39
|
Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. Role of advanced glycation endproducts, inhibition by fucose- and rhamnose-rich oligosaccharides. Arch Gerontol Geriatr 2009; 50:327-31. [PMID: 19560218 DOI: 10.1016/j.archger.2009.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
It could be shown using the in vitro cell culture aging model, that elastase-type endopeptidase activity is progressively upregulated with successive passages (in vitro aging). Similar results were obtained previously by determining elastase-type activity as a function of age in aorta extracts (human) and skin extracts (mouse). Among the possible mechanisms involved we tested the role of advanced glycation endproducts (AGEs) on this process. AGE-production was shown to increase with age, exemplified by the exponential age-dependent crosslinking of collagen, demonstrated by Fritz Verzár, already in 1963. Several AGEs significantly upregulated elastase-type activity when added to the culture medium of fibroblasts. This effect appears to be mediated by some AGE-receptors as shown previously, and could be inhibited by a 5 kDa rhamnose-rich oligosaccharide (RROP-3) as well as by a fucose-rich oligosaccharide (FROP-3). When present in the culture media, RROP-3 and FROP-3 efficiently inhibited the passage-dependent upregulation of elastase-type activity expressed by human skin fibroblasts. The use of specific inhibitors and zymography suggested that matrix metalloproteinases (MMP)-9 activation and expression are mainly involved. A detailed discussion is proposed for the interpretation of age-dependent modifications of tissues as vascular wall and skin in the light of these and related experiments, highlighting the role of several specific receptors in the mediation of the observed reactions.
Collapse
|
40
|
Robert L, Labat-Robert J, Robert AM. Physiology of skin aging. ACTA ACUST UNITED AC 2009; 57:336-41. [DOI: 10.1016/j.patbio.2008.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/18/2008] [Indexed: 11/25/2022]
|
41
|
Faury G, Ruszova E, Molinari J, Mariko B, Raveaud S, Velebny V, Robert L. The α-l-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer. Biochim Biophys Acta Gen Subj 2008; 1780:1388-94. [DOI: 10.1016/j.bbagen.2008.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 07/05/2008] [Accepted: 07/10/2008] [Indexed: 01/18/2023]
|
42
|
Péterszegi G, Andrès E, Molinari J, Ravelojaona V, Robert L. Effect of cellular aging on collagen biosynthesis. Arch Gerontol Geriatr 2008; 47:356-67. [DOI: 10.1016/j.archger.2007.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 11/29/2022]
|
43
|
Effect of cellular aging on collagen biosynthesis. Arch Gerontol Geriatr 2008; 47:368-76. [DOI: 10.1016/j.archger.2007.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022]
|
44
|
Ravelojaona V, Robert AM, Robert L, Renard G. Collagen biosynthesis in cell culture: Comparison of corneal keratocytes and skin fibroblasts. ACTA ACUST UNITED AC 2008; 56:66-9. [DOI: 10.1016/j.patbio.2007.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
45
|
Ravelojaona V, Robert AM, Robert L. Expression of senescence-associated beta-galactosidase (SA-beta-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides. Arch Gerontol Geriatr 2008; 48:151-4. [PMID: 18207583 DOI: 10.1016/j.archger.2007.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/01/2007] [Accepted: 12/06/2007] [Indexed: 12/20/2022]
Abstract
Expression by cells of the SA-beta-Gal was shown to be a reliable indicator of the switch mechanism used by cells to enter the senescent phenotype. We used this method in order to explore the variation of SA-beta-Gal-positive cells with passage number and time spent in culture. Both parameters produced an increase of SA-beta-Gal-positive cells. The addition of a Maillard-product (advanced glycation end-product=AGE) to the fibroblast cultures also increased SA-beta-Gal expression. Fucose- and rhamnose-rich oligo- and polysaccharides (FROPs and RROPs, respectively) provided a significant protection against this AGE-induced increase of SA-beta-Gal-positive cells. It is speculated that these processes might well play an important role in skin aging.
Collapse
Affiliation(s)
- V Ravelojaona
- Laboratoire de Recherches Ophtalmologiques, Hôtel Dieu, Université Paris, France
| | | | | |
Collapse
|
46
|
Photoprotective effects of glucomannan isolated from Candida utilis. Carbohydr Res 2007; 343:501-11. [PMID: 18067882 DOI: 10.1016/j.carres.2007.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/08/2007] [Accepted: 11/11/2007] [Indexed: 12/22/2022]
Abstract
Glucomannans belong to yeast and fungal cell wall polysaccharides with known immunostimulatory and radioprotective effects. However, glucomannan protective effects against pathological consequences of skin exposure to short wavelength solar light, ultraviolet (UV) radiation, are unclear. Herein, a highly branched glucomannan (GM) isolated from the cell wall of Candida utilis, a member of the alpha-(1-->6)-D-mannan group, was tested for its photoprotective effects in an in vitro model of UVB-irradiated human keratinocytes and an in vivo model of UV-induced erythema formation in human volunteers. GM suppressed the UVB-induced decrease of keratinocyte viability, which was connected with the suppression of UVB-induced keratinocyte apoptosis. GM reduced UVB-mediated caspase activation together with suppression of DNA fragment release into the cytoplasm. Furthermore, GM suppressed UVB-induced gene expression of pro-inflammatory markers including nuclear factor kappa B, inducible nitric oxide synthase, interleukins 8 and 1, together with suppression of prostaglandin E2 and interleukin 1alpha protein release. In vivo, GM decreased UV-induced skin erythema formation, which was correlated with a decrease of phosholipase A(2) activity within the stratum corneum. It could be concluded that GM isolated from C. utilis possesses significant photoprotective effects on human keratinocytes in vitro as well as in vivo.
Collapse
|
47
|
Li XM, Ma YL, Liu XJ. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:504-11. [PMID: 17224253 DOI: 10.1016/j.jep.2006.12.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/02/2006] [Accepted: 12/14/2006] [Indexed: 05/07/2023]
Abstract
Oxidative damage of biomolecules increases with age and is postulated to be a major causal factor of various physiological function disorders. Consequently, the concept of anti-age by antioxidants has been developed. Lycium barbarum fruits have been used as a traditional Chinese herbal medicine and the data obtained in in vitro models have clearly established the antioxidant potency of the polysaccharides isolated from the fruits. In the present study, the age-dependent changes in the antioxidant enzyme activity, immune function and lipid peroxidation product were investigated and effect of Lycium barbarum polysaccharides on age-induced oxidative stress in different organs of aged mice was checked. Lycium barbarum polysaccharides (200, 350 and 500 mg/kg b.w. in physiological saline) were orally administrated to aged mice over a period of 30 days. Aged mice receiving vitamin C served as positive control. Enzymatic and non-enzymatic antioxidants, lipid peroxides in serum and tested organs, and immune function were measured. Result showed that increased endogenous lipid peroxidation, and decreased antioxidant activities, as assessed by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (TAOC), and immune function were observed in aged mice and restored to normal levels in the polysaccharides-treated groups. Antioxidant activities of Lycium barbarum polysaccharides can be compable with normal antioxidant, vitamin C. Moreover, addition of vitamin C to the polysaccharides further increased the in vivo antioxidant activity of the latter. It is concluded that the Lycium barbarum polysaccharides can be used in compensating the decline in TAOC, immune function and the activities of antioxidant enzymes and thereby reduces the risks of lipid peroxidation accelerated by age-induced free radical.
Collapse
Affiliation(s)
- X M Li
- School of Food Science and Technology of the XingJiang Agriculture University, Urumqili City, XinJiang 830000, PR China.
| | | | | |
Collapse
|