1
|
Noumi E, Ahmad I, Adnan M, Patel H, Merghni A, Haddaji N, Bouali N, Alabbosh KF, Kadri A, Caputo L, Polito F, Snoussi M, Feo VD. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023; 28:7691. [PMID: 38067422 PMCID: PMC10707387 DOI: 10.3390/molecules28237691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al Baha 65527, Saudi Arabia;
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| |
Collapse
|
2
|
Noumi E, Ahmad I, Adnan M, Merghni A, Patel H, Haddaji N, Bouali N, Alabbosh KF, Ghannay S, Aouadi K, Kadri A, Polito F, Snoussi M, De Feo V. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1997. [PMID: 37653914 PMCID: PMC10220905 DOI: 10.3390/plants12101997] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| |
Collapse
|
3
|
Merghni A, Hamdi H, Ben Abdallah M, Al-Hasawi ZM, Al-Quwaie DA, Abid-Essefi S. Detection of Methicillin-Resistant Staphylococcus aureus among Foodborne Pathogenic Strains and Assessment of Their Adhesion Ability and Cytotoxic Effects in HCT-116 Cells. Foods 2023; 12:foods12050974. [PMID: 36900491 PMCID: PMC10001405 DOI: 10.3390/foods12050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
- Correspondence:
| | - Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| | - Marwa Ben Abdallah
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Zaki M. Al-Hasawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Comparative Study of Antibacterial, Antibiofilm, Antiswarming and Antiquorum Sensing Activities of Origanum vulgare Essential Oil and Terpinene-4-ol against Pathogenic Bacteria. Life (Basel) 2022; 12:life12101616. [PMID: 36295051 PMCID: PMC9605346 DOI: 10.3390/life12101616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils from aromatic and medicinal plants have many bioactive compounds known for their important biological activities mainly their antibacterial effects. Here we evaluated qualitatively and quantitatively the biofilm formation capability of pathogenic bacterial strains (n = 8). Then, we investigated the antibacterial, antibiofilm, antiquorum-sensing, and antiswarming efficacy of Origanum vulgare essential oil (EO) and terpinene-4-ol. Our results revealed that EO exhibited a more potent inhibitory effect against the tested strains. While the terpinene-4-ol was found to be more effective against developed Staphylococcus aureus biofilm. Regarding the anti quorum-sensing activity, we noticed that O. vulgare displayed better inhibition percentages in violacein production even at a low concentration (MIC/4). Additionally, this EO showed better inhibition of Pseudomonas aeruginosa PAO1 migration in comparison with the terpinene-4-ol. Our findings revealed that using pure O. vulgare EO demonstrated better competitive effects against pathogenic bacteria with a different mode of action when compared to the terpinene-4-ol. Hence, exploration and development of efficient anti-infection agents from natural resources such as full EOs represent promising tools in anti-infective therapy.
Collapse
|
5
|
ALrashidi AA, Noumi E, Snoussi M, Feo VD. Chemical Composition, Antibacterial and Anti-Quorum Sensing Activities of Pimenta dioica L. Essential Oil and Its Major Compound (Eugenol) against Foodborne Pathogenic Bacteria. PLANTS (BASEL, SWITZERLAND) 2022; 11:540. [PMID: 35214872 PMCID: PMC8876795 DOI: 10.3390/plants11040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
The Pimenta dioica essential oil and its main compound (eugenol) were tested for their antibacterial potency against eight Gram-negative and Gram-positive bacteria implicated in food intoxication. This essential oil and its main component were evaluated for their ability in inhibiting Quorum sensing (QS)-dependent mechanisms such as motility in Pseudomonas aeruginosa PAO1, production of violacein by Chromobacterium violaceum and biofilm formation on stainless steel and glass surfaces. Our results demonstrated that P. dioica essential oil and eugenol were active against all tested strains with a maximum of inhibition against Listeria monocytogenes CECT 933 (26.66 ± 0.57 mm). The minimal inhibitory concentration (MIC) value of the tested essential oil and eugenol was about 0.048 mg/mL for all strains. The obtained results demonstrated that 4CMI eugenol inhibited foodborne strains biofilm formation on the glass strips by 73.79% and by 75.90% on polystyrene. Moreover, 0.048 mg/mL (MIC) of P. dioica essential oil inhibited the violacein production by 69.30%. At 100 µg/mL, P. dioica oil and eugenol affected the motility of PAO1 by 42.00% and 29.17%, respectively. Low concentrations of P. dioica essential oil are active against the quorum sensing phenomena and biofilm potency. Thus, this essential oil could be further investigated for new molecules useful for the treatment of toxi-alimentary infections.
Collapse
Affiliation(s)
- Ayshah Aysh ALrashidi
- Department of Biology, University of Ha’il, College of Science, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (A.A.A.); (M.S.)
| | - Emira Noumi
- Department of Biology, University of Ha’il, College of Science, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (A.A.A.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization (LR14-ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, University of Ha’il, College of Science, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (A.A.A.); (M.S.)
- Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy;
| |
Collapse
|
6
|
Achek R, Hotzel H, Nabi I, Kechida S, Mami D, Didouh N, Tomaso H, Neubauer H, Ehricht R, Monecke S, El-Adawy H. Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria. Pathogens 2020; 9:pathogens9020153. [PMID: 32102470 PMCID: PMC7168657 DOI: 10.3390/pathogens9020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilm-associated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilm-associated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria.
Collapse
Affiliation(s)
- Rachid Achek
- Faculty of Nature and Life and Earth Sciences, Djilali-Bounaama University, Soufay, Khemis-Miliana 44225, Algeria;
- Correspondence: (R.A.); (H.E.-A.)
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Ibrahim Nabi
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Souad Kechida
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Djamila Mami
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Nassima Didouh
- Faculty of Nature and Life and Earth Sciences, Djilali-Bounaama University, Soufay, Khemis-Miliana 44225, Algeria;
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (R.E.); (S.M.)
- InfectoGnostics Research Campus Jena e. V., 07743 Jena, Germany
- Institute for Physical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (R.E.); (S.M.)
- InfectoGnostics Research Campus Jena e. V., 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
- Faculty of Veterinary Medicine, Kafrelsheik University, Kafr El-Sheik 35516, Egypt
- Correspondence: (R.A.); (H.E.-A.)
| |
Collapse
|
7
|
Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathog 2018. [PMID: 29522803 DOI: 10.1016/j.micpath.2018.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibacterial resistance is an increasingly serious threat to global public health. The search for new anti-infection agents from natural resources, with different mode of actions and competitive effects became a necessity. In this study, twenty height methicillin-resistant Staphylococcus aureus (MRSA) strains were investigated for their biofilm formation ability. Subsequently, the antibiofilm effects of Eucalyptus globulus essential oil and its main component 1,8-cineole, against MRSA, as well as their antiquorum sensing potential, were evaluated. Our results displayed the potent efficacy of both E. globulus essential oil and 1,8-cineole against the development of biofilms formed by the methicillin-resistant strains. Additionally, E. globulus essential oil showed more potent of anti-QS activity, even at a low concentration, when compared to 1,8-cineole. All these property of tested agents may pave the way to prevent the development of biofilm formation by MRSA and subsequently the spreading of nosocomial infection.
Collapse
|
8
|
Merghni A, Ben Nejma M, Dallel I, Tobji S, Ben Amor A, Janel S, Lafont F, Aouni M, Mastouri M. High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. Microb Pathog 2015; 91:61-7. [PMID: 26620082 DOI: 10.1016/j.micpath.2015.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
Orthodontic and other oral appliances act as reservoir of opportunistic pathogens that can easily become resistant to antibiotics and cause systemic infections. The aim of this study was to investigate the ability of Staphylococcus aureus strains isolated from healthy patients with orthodontic appliances, to adhere to biotic (HeLa cells) and abiotic surfaces (polystyrene and dental alloy). Adhesive ability to polystyrene was tested by crystal violet staining and quantitative biofilm production on dental alloy surfaces was evaluated by MTT reduction assay. In addition, the presence of icaA and icaD genes was achieved by polymerase chain reaction (PCR). Qualitative biofilm production revealed that 70.6% of strains were slime producers. The metabolic activity of S. aureus biofilms on dental alloy surfaces was high and did not differ between tested strains. Moreover, all the isolates were adhesive to HeLa cells and 94% of them harbor icaA and icaD genes. Considerable adhesion and internalization capacity to the epithelial HeLa cells and strong biofilm production abilities together, with a high genotypic expression of icaA/icaD genes are an important equipment of S. aureus to colonize orthodontic appliances and eventually to disseminate towards other body areas.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia.
| | - Mouna Ben Nejma
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Ines Dallel
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | - Samir Tobji
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | - Adel Ben Amor
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | | | - Frank Lafont
- BioImaging Center Lille-FR3642, Lille, France; Cellular Microbiology and Physics of Infection Group, Center of Infection and Immunity of Lille: CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University, France
| | - Mahjoub Aouni
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Maha Mastouri
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Microbiology, University Hospital of Fattouma Bourguiba, Monastir, Tunisia
| |
Collapse
|
9
|
Merghni A, Ben Nejma M, Hentati H, Mahjoub A, Mastouri M. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity. Microb Pathog 2014; 73:7-12. [DOI: 10.1016/j.micpath.2014.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/16/2022]
|
10
|
Biofilm production, adherence and morphological alterations of Shigella spp. under salt conditions. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-010-0190-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Ellafi A, Denden I, Abdallah FB, Souissi I, Bakhrouf A. Survival and adhesion ability of Shigella spp. strains after their incubation in seawater microcosms. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9995-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Dice B, Stoodley P, Buchinsky F, Metha N, Ehrlich GD, Hu FZ. Biofilm formation by ica-positive and ica-negative strains of Staphylococcus epidermidis in vitro. BIOFOULING 2009; 25:367-375. [PMID: 19267282 DOI: 10.1080/08927010902803297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as 'negative for biofilm formation' based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains.
Collapse
Affiliation(s)
- Bethany Dice
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|