1
|
Li H, Husain AN, Moffat D, Klebe S. Nonmesothelial Spindle Cell Tumors of Pleura and Pericardium. Surg Pathol Clin 2024; 17:257-270. [PMID: 38692809 DOI: 10.1016/j.path.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Spindle cell lesions of the pleura and pericardium are rare. Distinction from sarcomatoid mesothelioma, which has a range of morphologic patterns, can be difficult, but accurate diagnosis matters. This article provides practical guidance for the diagnosis of pleural spindle cell neoplasms, focusing on primary lesions.
Collapse
Affiliation(s)
- Huihua Li
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - David Moffat
- Department of Anatomical Pathology, SA Pathology and Flinders University, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, SA Pathology and Flinders University, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
2
|
Kovacs I, Bugyik E, Dezso K, Tarnoki-Zach J, Mehes E, Gulyas M, Czirok A, Lang E, Grusch M, Schelch K, Hegedus B, Horvath I, Barany N, Megyesfalvi Z, Tisza A, Lohinai Z, Hoda MA, Hoetzenecker K, Pezzella F, Paku S, Laszlo V, Dome B. Malignant pleural mesothelioma nodules remodel their surroundings to vascularize and grow. Transl Lung Cancer Res 2022; 11:991-1008. [PMID: 35832452 PMCID: PMC9271443 DOI: 10.21037/tlcr-21-828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/24/2022] [Indexed: 12/03/2022]
Abstract
Background The microanatomical steps of malignant pleural mesothelioma (MPM) vascularization and the resistance mechanisms to anti-angiogenic drugs in MPM are unclear. Methods We investigated the vascularization of intrapleurally implanted human P31 and SPC111 MPM cells. We also assessed MPM cell's motility, invasion and interaction with endothelial cells in vitro. Results P31 cells exhibited significantly higher two-dimensional (2D) motility and three-dimensional (3D) invasion than SPC111 cells in vitro. In co-cultures of MPM and endothelial cells, P31 spheroids permitted endothelial sprouting (ES) with minimal spatial distortion, whereas SPC111 spheroids repealed endothelial sprouts. Both MPM lines induced the early onset of submesothelial microvascular plexuses covering large pleural areas including regions distant from tumor colonies. The development of these microvascular networks occurred due to both intussusceptive angiogenesis (IA) and ES and was accelerated by vascular endothelial growth factor A (VEGF-A)-overexpression. Notably, SPC111 colonies showed different behavior to P31 cells. P31 nodules incorporated tumor-induced capillary plexuses from the earliest stages of tumor formation. P31 cells deposited a collagenous matrix of human origin which provided "space" for further intratumoral angiogenesis. In contrast, SPC111 colonies pushed the capillary plexuses away and thus remained avascular for weeks. The key event in SPC111 vascularization was the development of a desmoplastic matrix of mouse origin. Continuously invaded by SPC111 cells, this matrix transformed into intratumoral connective tissue trunks, providing a route for ES from the diaphragm. Conclusions Here, we report two distinct growth patterns of orthotopically implanted human MPM xenografts. In the invasive pattern, MPM cells invade and thus co-opt peritumoral capillary plexuses. In the pushing/desmoplastic pattern, MPM cells induce a desmoplastic response within the underlying tissue which allows the ingrowth of a nutritive vasculature from the pleura.
Collapse
Affiliation(s)
- Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Elod Mehes
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Marton Gulyas
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elisabeth Lang
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Ildiko Horvath
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Anna Tisza
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktoria Laszlo
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Yuan Y, Geng B, Xu X, Zhao H, Bai J, Dou Z, Jia S, Yu X, Luo W. Dual VEGF/PDGF knockdown suppresses vasculogenic mimicry formation in choroidal melanoma cells via the Wnt5a/β-catenin/AKT signaling pathway. Acta Histochem 2022; 124:151842. [PMID: 34995928 DOI: 10.1016/j.acthis.2021.151842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aimed to explore the effects of knocking down both vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) on vasculogenic mimicry (VM) formation in choroidal melanoma (CM) cells. METHODS Cell counting Kit (CCK)-8, monoclonal formation, wound healing, transwell and flow cytometry assays were used to observe the cell effects in CM cell line, ocular choroidal melanoma-1 cells (OCM-1) with respect to proliferation, migration, invasion and apoptosis. Three-dimensional (3D) cultures were also used to characterize VM tube structural effects in OCM-1 cells and western blotting was used to characterize protein expression changes in VM-related markers. RESULTS Dual VEGF/PDGF knockdown suppressed cell proliferation, migration and invasion, but promoted cell apoptosis. It also reduced VM tube structures in OCM-1 cells. VM associated markers including, VE-cadherin, EphA2 and MT1-MMP were also down-regulated in OCM-1 cells. Similarly, Wnt5a, β-catenin and phosphorylated-AKT levels were also down-regulated. Western blotting and 3D cultures further demonstrated that combined Wnt5a silencing with dual VEGF/PDGF knockdown significantly decreased VE-cadherin and EphA2 levels and reduced VM tube structures in OCM-1 cells. CONCLUSIONS Dual VEGF/PDGF knockdown suppressed cell growth and metastasis in OCM-1 cells, and blocked the Wnt5a/β-catenin/AKT signaling pathway thereby inhibiting VM formation.
Collapse
|
4
|
Ramundo V, Zanirato G, Aldieri E. The Epithelial-to-Mesenchymal Transition (EMT) in the Development and Metastasis of Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms222212216. [PMID: 34830097 PMCID: PMC8621591 DOI: 10.3390/ijms222212216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor mainly associated with asbestos exposure and is characterized by a very difficult pharmacological approach. One of the molecular mechanisms associated with cancer onset and invasiveness is the epithelial-to-mesenchymal transition (EMT), an event induced by different types of inducers, such as transforming growth factor β (TGFβ), the main inducer of EMT, and oxidative stress. MPM development and metastasis have been correlated to EMT; On one hand, EMT mediates the effects exerted by asbestos fibers in the mesothelium, particularly via increased oxidative stress and TGFβ levels evoked by asbestos exposure, thus promoting a malignant phenotype, and on the other hand, MPM acquires invasiveness via the EMT event, as shown by an upregulation of mesenchymal markers or, although indirectly, some miRNAs or non-coding RNAs, all demonstrated to be involved in cancer onset and metastasis. This review aims to better describe how EMT is involved in driving the development and invasiveness of MPM, in an attempt to open new scenarios that are useful in the identification of predictive markers and to improve the pharmacological approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
5
|
Chia PL, Russell P, Asadi K, Thapa B, Gebski V, Murone C, Walkiewicz M, Eriksson U, Scott AM, John T. Analysis of angiogenic and stromal biomarkers in a large malignant mesothelioma cohort. Lung Cancer 2020; 150:1-8. [PMID: 33035778 DOI: 10.1016/j.lungcan.2020.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malignant mesothelioma (MM) is an aggressive malignancy of the pleura and other mesothelial membranes. Agents targeting vascular endothelial growth factor (VEGF) such as bevacizumab; and multi-kinase inhibitors such as nintedanib [angiokinase inhibitor of VEGF, platelet-derived growth factor (PDGF) receptor and fibroblast growth factor receptor (FGFR)] have recently demonstrated efficacy in MM. METHODS Tissue microarrays (TMAs) were created from formalin-fixed, paraffin-embedded tissue samples obtained from 326 patients with MM who were treated surgically. PDGF-CC, FGFR-1, VEGF and CD31 expression were analysed by immunohistochemical (IHC) staining. The H-score method assigned a score of 0-300 to each sample, based on the percentage of cells stained at different intensities. CD31 was evaluated via Chalkley's method to evaluate microvessel density. We evaluated the association between expression of the biomarkers, clinicopathological factors and outcomes, in patients with MM. RESULTS CD31 high (≥5) was seen in only 31/302 (10.3%) irrespective of histology. PDGF-CC high (≥150) was seen in 203 /310 (65%) of all samples. VEGF high (≥80) was seen in 219/322 (68%) of all MM with 143/209 (68%) of epithelioid histology. FGFR-1 high (≥40) was seen in 127/310 (41%) of all MM. There was no association of VEGF and FGFR-1 IHC with survival nor differences between histological subtypes. There was a non-significant trend towards poorer survival in epithelioid tumours with increased PDGF-CC expression (OS 18.5 vs 13.2 months; HR 0.7928; 95% CI 0.5958 to 1.055, P = 0.1110). High CD31 score was associated with significantly poorer survival (OS 12 vs 8.6 months; HR 0.48; 95% CI 0.2873 to 0.7941, P = 0.0044). Of the 31 patients with high CD31 scores; 23/31 (74%) were also high for PDGF-CC and 20/31 (64%) with high VEGF scores. CD31 was found to be an independent prognostic factor in multivariate analysis (HR 1.540; 95% CI 1.018 to 2.330; p = 0.041). CONCLUSIONS High CD31 was an independent poor prognostic factor and high PDGF-CC expression was associated with poor survival in MM. Abrogating these pathways may have prognostic implications.
Collapse
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| | - Prudence Russell
- Department of Pathology, St Vincent's Hospital, Melbourne, Australia
| | - Khashi Asadi
- Department of Pathology, Austin Hospital, Melbourne, Australia
| | - Bibhusal Thapa
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Val Gebski
- Australia National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Carmel Murone
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | | | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
6
|
Nakashima Y, Inamura K, Ninomiya H, Okumura S, Mun M, Kirimura S, Kobayashi M, Okubo K, Ishikawa Y. Frequent expression of conventional endothelial markers in pleural mesothelioma: usefulness of claudin-5 as well as combined traditional markers to distinguish mesothelioma from angiosarcoma. Lung Cancer 2020; 148:20-27. [PMID: 32777673 DOI: 10.1016/j.lungcan.2020.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Distinguishing pleural sarcomatoid mesotheliomas from true sarcomas is challenging because the former does not always express the mesothelial markers, and diagnosis is often made on the basis of keratin expression. Consequently, sarcomas such as angiosarcomas that express keratin complicate the differential diagnosis. Furthermore, some mesotheliomas have been reported to express endothelial markers. The aim of this study is to identify useful markers for distinguishing pleural sarcomatoid mesothelioma from angiosarcoma. MATERIALS AND METHODS This study enrolled 147 patients with pleural mesothelioma-93 with epithelioid, 25 with biphasic, and 29 with sarcomatoid subtypes-and 41 patients with angiosarcomas in various organs. The expression levels of cytokeratin, mesothelial, and endothelial markers were assayed in both groups to identify the markers that could assist in distinguishing mesothelioma from angiosarcoma. Cytokeratin (AE1/AE3, CAM 5.2), endothelial (CD31, CD34, ERG, factor VIII, and claudin-5), and mesothelial (calretinin, WT-1, podoplanin (D2-40), EMA, and CK5/6) markers were immunohistochemically assayed using tissue blocks. RESULTS More than 90% of the mesotheliomas and less than 20% of the angiosarcomas expressed cytokeratin. Calretinin was expressed in 82% of all types of mesotheliomas but in only 48% of sarcomatoid mesotheliomas. Endothelial markers were expressed in mesothelioma tissues-CD31 in 10.3%, CD34 in 3.5%, ERG in 29%, and factor VIII in 3.4%-and the positivity was higher in sarcomatoid than in epithelioid and biphasic mesotheliomas. Claudin-5 was expressed in all the angiosarcomas, but not in any of the mesotheliomas. CONCLUSION We found overlapping immunophenotypes in pleural mesotheliomas and angiosarcomas, but the sensitivity and specificity of claudin-5 expression were sufficient to distinguish between them. The differential diagnosis of mesothelioma should therefore include claudin-5 in a panel of immunohistochemical markers to distinguish mesothelioma from angiosarcoma.
Collapse
Affiliation(s)
- Yasuhiro Nakashima
- Division of Pathology, The Cancer Institute, Departments of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Departments of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan.
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute, Departments of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan.
| | - Sakae Okumura
- Department of Thoracic Surgery, The Cancer Institute Hospital, JFCR, Tokyo 135-8550, Japan.
| | - Mingyon Mun
- Department of Thoracic Surgery, The Cancer Institute Hospital, JFCR, Tokyo 135-8550, Japan.
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute, Departments of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Department of Pathology, School of Medicine, International University of Health and Welfare, Tokyo 108-8329, Japan.
| |
Collapse
|
7
|
Cheng L, Wang Q, Tao X, Qin Y, Wu Q, Zheng D, Chai D, Zhang Y, Lu D, Ci H, Wang Z, Ma J, Wang D, Cheng Z, Wu S, Tao Y. FOXM 1 induces Vasculogenic mimicry in esophageal cancer through β-catenin /Tcf4 signaling. Diagn Pathol 2020; 15:14. [PMID: 32035486 PMCID: PMC7007660 DOI: 10.1186/s13000-020-00929-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the role of FOXM1, β-catenin and TCF4 in esophageal cancer (EC) and their relationship to VM (Vasculogenic Mimicry). Methods CCK-8 were performed to examine EC cell proliferation in FOXM1 silenced cells. EC cell migration and invasion were investigated through wound healing and Transwell assays, respectively. The formation of pipe like structures were assessed in 3D cultures. The expression of Foxm1, β-catenin, Tcf4 and E-cadherin were investigated through western blot, RT-qPCR and immunohistochemistry (IHC) staining. The relationship between FOXM1 expression, clinic-pathological features, and overall survival (OS) were further analyzed. Results A loss of FOXM1 expression correlated with the OS of ESCC patients. FOXM1 silencing led to a loss of cell growth and suppressed cell migration and invasion in ESCC cells. VM structures were identified in ESCC tissues and human EC cell lines. Mechanistically, FOXM1 was found to promote tumorigenesis through the regulation of β-catenin, Tcf4, and E-cadherin in EC cells, leading to the formation of VM structures. Conclusions These findings highlight FoxM1 as a novel therapeutic target in ESCC.
Collapse
Affiliation(s)
- Lili Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qi Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Xiaoying Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yanzi Qin
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qiong Wu
- Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dafang Zheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yong Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dongbing Lu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zhiwei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Jia Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yisheng Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China.
| |
Collapse
|
8
|
Zhang Z, Imani S, Shasaltaneh MD, Hosseinifard H, Zou L, Fan Y, Wen Q. The role of vascular mimicry as a biomarker in malignant melanoma: a systematic review and meta-analysis. BMC Cancer 2019; 19:1134. [PMID: 31752759 PMCID: PMC6873453 DOI: 10.1186/s12885-019-6350-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) a microvascular system consisting of non-endothelial cells that is newly formed by aggressive tumors, has been proposed as an important therapeutic target in malignant melanoma (MM). We performed a systematic literature review to evaluate the diagnostic and prognostic accuracy of VM status for overall survival of MM patients. METHODS The quality of the included studies was evaluated using the QUADAS-2 tool. Diagnostic capacity of VM variables, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under summary receiver operating characteristic (SROC), were pooled using Meta-DiSc software. RESULTS A retrospective observational study was conducted based on twelve clinical studies including 978 clinically confirmed melanoma patients with proportion (P). VM+ melanoma cells were associated with poor prognosis in 38% of MM group (P = 0.35, 95% confidence intervals (CI): 0.27-0.42, p < 0.001). The pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.84) and 0.69 (95% CI: 0.66-0.71), respectively. Furthermore, the pooled PLR, NLR, and DOR were 2.56 (95% CI: 1.94-3.93), 0.17 (95% CI: 0.07-0.42), and 17.75 (95% CI: 5.30-59.44), respectively. Furthermore, the AUC of SROC was 0.63, indicating high reliability of VM status as a biomarker. Importantly, subgroup results suggested that VM+ status is a significantly accurate prognostic biomarker when diagnosed by the CD31-/PAS+ staining methods in Asian MM samples (p < 0.001). CONCLUSIONS Our findings support the potential of VM status of tumors as a promising prognostic biomarker and emphasize an effective adjuvant therapeutic strategy in the prognosis of Asian MM patients.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | | | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| |
Collapse
|
9
|
Ci H, Xu Z, Xu J, Wang Y, Wu S. Expressions of KAI1 and E-cadherin in nonsmall cell lung cancer and their correlation with vasculogenic mimicry. Medicine (Baltimore) 2018; 97:e12293. [PMID: 30290593 PMCID: PMC6200519 DOI: 10.1097/md.0000000000012293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metastasis and recurrence are the most common reasons for treatment failure of nonsmall cell lung cancer (NSCLC). Vasculogenic mimicry (VM, new blood supply formation in malignant tumors), E-Cadherin (a calcium-dependent transmembrane glycoprotein that mediates intercellular adhesion), KAI1 (a suppressor gene of tumor metastasis) are all valuable factors for metastasis and prognosis in diverse common human cancers. However, the correlation of VM, E-Cadherin, and KAI1 in NSCLC is still unclear. In this study, we analyzed the correlations among these factors as well as their respective correlations with clinicopathological parameters and survival in NSCLC. METHODS The level of VM, E-Cadherin, and KAI1 in 163 tissue samples of NSCLC was examined by immunhistochemistry. Clinical data were also collected. RESULTS Levels of VM was significantly higher, and levels of KAI1 and E-Cadherin significantly lower in NSCLC tissues than in normal lung tissues. Levels of VM were positively associated with lymph node metastasis (LNM), size, grade, and tumor node metastasis (TNM) stages, and negatively associated with patients' overall survival (OS). Levels of KAI1 and E-Cadherin were negatively correlated with LNM, size, grade, and TNM stage, and positively associated with patients' OS. In multivariate analysis, high levels of VM, E-Cadherin, and KAI1, as well as TNM stages were independently correlated with lower OS in patients with NSCLC. CONCLUSION VM and the expression of E-Cadherin and KAI1 may represent promising metastatic and prognostic biomarkers, as well as potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongfei Ci
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhouyi Xu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Jing Xu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Yichao Wang
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Shiwu Wu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10:2429-2437. [PMID: 30122992 PMCID: PMC6080880 DOI: 10.2147/cmar.s164675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vasculogenic mimicry (VM) describes the process utilized by highly aggressive cancer cells to generate vascular-like structures without the presence of endothelial cells. VM has been vividly described in various tumors and participates in cancer progression dissemination and metastasis. Diverse molecular mechanisms and signaling pathways are involved in VM formation. Furthermore, the patterning characteristics of VM, detected with molecular imaging, are being investigated for use as a tool to aid clinical practice. This review explores the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition of these advances will increasingly affect the development of novel therapeutic target strategies for VM in human cancer.
Collapse
Affiliation(s)
- Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China,
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China, .,Division of Graduate, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
11
|
Evidence of Vasculogenic Mimicry in a Palpebral Melanocytoma in a Dog. J Comp Pathol 2018; 162:43-46. [DOI: 10.1016/j.jcpa.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
|
12
|
Han C, Sun B, Zhao X, Zhang Y, Gu Q, Liu F, Zhao N, Wu L. Phosphorylation of STAT3 Promotes Vasculogenic Mimicry by Inducing Epithelial-to-Mesenchymal Transition in Colorectal Cancer. Technol Cancer Res Treat 2017; 16:1209-1219. [PMID: 29333928 PMCID: PMC5762092 DOI: 10.1177/1533034617742312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry refers to the process by which highly invasive cancer cells mimic endothelial cells by forming blood channels. Vasculogenic mimicry is important for the invasion and metastasis of tumor cells in colorectal cancer. STAT3 was initially identified as a mediator of the inflammation-associated acute phase response. The phosphorylation of Signal Transducers and Activators of Transcription 3 (p-STAT3) is closely related to tumor invasion and migration. We analyzed the relationship between p-STAT3 and vasculogenic mimicry formation in 65 human colorectal cancer samples, and the results showed that the expression of p-STAT3 is significantly correlated with vasculogenic mimicry, tumor metastasis, Tumor, Lymph Node and Metastasis Stage (TNM Stage), and poor prognosis. It is known that interleukin 6 can induce the phosphorylation of STAT3. We found that using interleukin 6 to induce p-STAT3 activation in colorectal cancer cell lines can result in vasculogenic mimicry and using AG490 to suppress p-STAT3 activation restrained vasculogenic mimicry. Furthermore, the state of p-STAT3 activation can affect epithelial-to-mesenchymal transition. By immunofluorescence double staining, we discovered that p-STAT3 expression is more directly correlated with the epithelial-to-mesenchymal transition marker vimentin than with the vasculogenic mimicry-related protein VE-cadherin. These data show that activated p-STAT3 upregulates epithelial-to-mesenchymal transition–related proteins and promotes vasculogenic mimicry.
Collapse
Affiliation(s)
- Cong Han
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baocun Sun
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China.,3 Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiulan Zhao
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanhui Zhang
- 3 Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Qiang Gu
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Fang Liu
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Nan Zhao
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lili Wu
- 2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Pulford E, McEvoy J, Hocking A, Prabhakaran S, Griggs K, Klebe S. The Effect of Aquaporin 1-Inhibition on Vasculogenic Mimicry in Malignant Mesothelioma. Int J Mol Sci 2017; 18:ijms18112293. [PMID: 29104239 PMCID: PMC5713263 DOI: 10.3390/ijms18112293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive malignancy of the serosal membranes, with poor overall survival and quality of life. Limited targeted treatment strategies exist due to restricted knowledge of pathogenic pathways. Vasculogenic mimicry (VM) is a newly described phenomenon associated with increased aggressiveness in other malignancies, and has been characterized in MM. Normal mesothelium expresses aquaporin 1 (AQP1) and retained expression has been associated with improved survival in MM. AQP1 is expressed by normal vascular endothelium and is involved in mediating MM cell motility and proliferation. We investigated the role of AQP1 in VM, and its interaction with the pro-angiogenic factor vascular endothelial growth factor A (VEGFA), which is variably expressed in MM. Matrigel VM assays were performed using NCI-H226 and NCI-H28 MM cell lines and primary cells in hypoxia and normoxia. The synthetic blocker AqB050 and siRNA were used to inhibit AQP1, and bevacizumab was used to inhibit VEGF. Inhibition of AQP1 resulted in increased VEGFA secretion by MM cells and reduced VM in MM cell lines in hypoxia but not normoxia. No change in VM was seen in MM primary cells. Combined inhibition of AQP1 and VEGF had no effect on VM in normoxia. In a heterotopic xenograft mouse model, AqB050 treatment did not alter vessel formation. AQP1 may interact with VEGFA and play a role in VM, especially under hypoxic conditions, but the heterogeneity of MM cells may result in different dominant pathways between patients.
Collapse
Affiliation(s)
- Emily Pulford
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - James McEvoy
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Ashleigh Hocking
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide 5001, SA, Australia.
| | - Kim Griggs
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide 5001, SA, Australia.
| |
Collapse
|
14
|
Sasanelli F, Hocking A, Pulford E, Irani Y, Klebe S. Vasculogenic mimicry in vitro in tumour cells derived from metastatic malignant pleural effusions. Pathology 2017; 49:537-539. [DOI: 10.1016/j.pathol.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
15
|
MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 2017; 24:386-392. [PMID: 28752859 PMCID: PMC5668497 DOI: 10.1038/cgt.2017.30] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) have been proven to be involved in cell metastasis and angiogenesis by interaction with the target mRNAs. Evidence has been confirmed that miR-140-5p is a tumor suppressor in human cancers such as breast cancer. However, the potential molecular mechanism of miR-140-5p in breast cancer invasion and angiogenesis is still poorly understood. According to our study, we reported that miR-140-5p inhibited the tumor invasion and angiogenesis of breast cancer cells both in vitro and in vivo by targeting VEGF-A. The mRNA amount of miR-140-5p was decreased in the breast cancer clinical samples and breast cancer with metastasis compared with the corresponding adjacent normal tissues and cancer without metastasis. MiR-140-5p mimics and a negative control were transfected into human MCF-7 and MDA-MB-231 cells. Transwell chambers were used to detect the invasive ability of the cells, and the angiogenic ability was assessed by tube-formation assay. The markers of invasion and angiogenesis, VEGF-A, CD31 and MMP-9, were detected by using immunohistochemistry and western blot analysis in vivo. VEGF-A was verified as a possible target gene of miR-140-5p, and corroborated by dual-luciferase reporter and ELISA. Taken together, the study elucidates the molecular mechanisms by which miR-140-5p inhibits breast cancer metastasis and angiogenesis, and provides a potent evidence for the development of a novel microRNA-targeting anticancer strategy for breast cancer patients.
Collapse
|
16
|
Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:171-195. [PMID: 29282684 DOI: 10.1007/978-981-10-6020-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.
Collapse
|