1
|
Li B, Zhao Q, Yang H, Wang X, Zhang Z, Gong Y, Wan X. Long-Circulating and Targeted Liposomes Co-loading Cisplatin and Mifamurtide: Formulation and Delivery in Osteosarcoma Cells. AAPS PharmSciTech 2024; 25:272. [PMID: 39592553 DOI: 10.1208/s12249-024-02992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Osteosarcoma (OS) is one of the most common primary bone sarcoma with high malignant degree and poor prognosis, for which there is an urgent need to develop novel therapeutic approaches. Recent research has revealed that mifamurtide significantly improved the outcome of OS patients when combined with adjuvant chemotherapy drugs including cisplatin (DDP). The present study aimed to construct a drug delivery system co-loading DDP and mifamurtide. Long-circulating targeted liposomes co-loading DDP and mifamurtide were constructed with Soy lecithin (SPC), cholesterol (Chol) and 1,2-distearoylglycero-3-phosphoethanolamine-n-[poly(ethyleneglycol)] (DSPE-PEG), modified with MMP14 targeting peptide BCY-B in the surface of liposomes. In addition to characterization, the cellular uptake, endocytosis pathway and inhibition on cell viability, migration, invasion and cell apoptosis of MG-63 cells were explored. The constructed liposomal delivery possessed the basic characteristics of liposomes and showed high affinity to MG-63 cells, resulting in high uptake efficiency in MG-63 cells. The endocytosis might be involved in multiple pathways including caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis, dependently on energy. The constructed long-circulating targeted liposomes co-loading DDP and mifamurtide significantly inhibited the cell viability, migration, invasion and cell apoptosis of MG-63 cells, improving the antitumor effect of DDP and mifamurtide in vitro. The constructed liposomal delivery system is suitable for co-loading DDP and mifamurtide to achieve active tumor targeting, supplying a new strategy for the treatment of OS.
Collapse
Affiliation(s)
- Bo Li
- Department of Musculoskeletal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Qianhui Zhao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Hanyu Yang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Xueyuying Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Zhijun Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China.
| | - Xu Wan
- Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Wei S, Tan J, Huang X, Zhuang K, Qiu W, Chen M, Ye X, Wu M. Metastasis and basement membrane-related signature enhances hepatocellular carcinoma prognosis and diagnosis by integrating single-cell RNA sequencing analysis and immune microenvironment assessment. J Transl Med 2024; 22:711. [PMID: 39085893 PMCID: PMC11293133 DOI: 10.1186/s12967-024-05493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and second leading cause of cancer-related deaths worldwide. The heightened mortality associated with HCC is largely attributed to its propensity for metastasis, which cannot be achieved without remodeling or loss of the basement membrane (BM). Despite advancements in targeted therapies and immunotherapies, resistance and limited efficacy in late-stage HCC underscore the urgent need for better therapeutic options and early diagnostic biomarkers. Our study aimed to address these gaps by investigating and evaluating potential biomarkers to improve survival outcomes and treatment efficacy in patients with HCC. METHOD In this study, we collected the transcriptome sequencing, clinical, and mutation data of 424 patients with HCC from The Cancer Genome Atlas (TCGA) and 240 from the International Cancer Genome Consortium (ICGC) databases. We then constructed and validated a prognostic model based on metastasis and basement membrane-related genes (MBRGs) using univariate and multivariate Cox regression analyses. Five immune-related algorithms (CIBERSORT, QUANTISEQ, MCP counter, ssGSEA, and TIMER) were then utilized to examine the immune landscape and activity across high- and low-risk groups. We also analyzed Tumor Mutation Burden (TMB) values, Tumor Immune Dysfunction and Exclusion (TIDE) scores, mutation frequency, and immune checkpoint gene expression to evaluate immune treatment sensitivity. We analyzed integrin subunit alpha 3 (ITGA3) expression in HCC by performing single-cell RNA sequencing (scRNA-seq) analysis using the TISCH 2.0 database. Lastly, wound healing and transwell assays were conducted to elucidate the role of ITGA3 in tumor metastasis. RESULTS Patients with HCC were categorized into high- and low-risk groups based on the median values, with higher risk scores indicating worse overall survival. Five immune-related algorithms revealed that the abundance of immune cells, particularly T cells, was greater in the high-risk group than in the low-risk group. The high-risk group also exhibited a higher TMB value, mutation frequency, and immune checkpoint gene expression and a lower tumor TIDE score, suggesting the potential for better immunotherapy outcomes. Additionally, scRNA-seq analysis revealed higher ITGA3 expression in tumor cells compared with normal hepatocytes. Wound healing scratch and transwell cell migration assays revealed that overexpression of the MBRG ITGA3 enhanced migration of HCC HepG2 cells. CONCLUSION This study established a direct molecular correlation between metastasis and BM, encompassing clinical features, tumor microenvironment, and immune response, thereby offering valuable insights for predicting clinical outcomes and immunotherapy responses in HCC.
Collapse
Affiliation(s)
- Shijia Wei
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524000, China
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xueshan Huang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Kai Zhuang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Weijian Qiu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Mei Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China.
| |
Collapse
|
3
|
Zhang X, Hong B, Li H, Zhao J, Li M, Wei D, Wang Y, Zhang N. Basement membrane-related MMP14 predicts poor prognosis and response to immunotherapy in bladder cancer. BMC Cancer 2024; 24:746. [PMID: 38898429 PMCID: PMC11186261 DOI: 10.1186/s12885-024-12489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Basement membrane (BM) is an important component of the extracellular matrix, which plays an important role in the growth and metastasis of tumor cells. However, few biomarkers based on BM have been developed for prognostic assessment and prediction of immunotherapy in bladder cancer (BLCA). METHODS In this study, we used the BLCA public database to explore the relationship between BM-related genes (BMRGs) and prognosis. A novel molecular typing of BLCA was performed using consensus clustering. LASSO regression was used to construct a signature based on BMRGs, and its relationship with prognosis was explored using survival analysis. The pivotal BMRGs were further analyzed to assess its clinical characteristics and immune landscape. Finally, immunohistochemistry was used to detect the expression of the hub gene in BLCA patients who underwent surgery or received immune checkpoint inhibitor (ICI) immunotherapy in our hospital. RESULTS We comprehensively analyzed the relationship between BMRGs and BLCA, and established a prognostic-related signature which was an independent influence on the prognostic prediction of BLCA. We further screened and validated the pivotal gene-MMP14 in public database. In addition, we found that MMP14 expression in muscle invasive bladder cancer (MIBC) was significantly higher and high MMP14 expression had a poorer response to ICI treatment in our cohort. CONCLUSIONS Our findings highlighted the satisfactory value of BMRGs and suggested that MMP14 may be a potential biomarker in predicting prognosis and response to immunotherapy in BLCA.
Collapse
Affiliation(s)
- Xuezhou Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Baoan Hong
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Hongwei Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Ning Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, P. R. China.
| |
Collapse
|
4
|
Zhang X, Jia Y, Zhang N, Wu D, Ma H, Ren X, Ju H, Wei Q. Self-Assembly-Induced Enhancement of Cathodic Electrochemiluminescence of Copper Nanoclusters for a Split-Type Matrix Metalloproteinase 14 Sensing Platform. Anal Chem 2024; 96:7265-7273. [PMID: 38649306 DOI: 10.1021/acs.analchem.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Xu L, Yang H, Yan M, Li W. Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clin Exp Med 2023; 23:2065-2083. [PMID: 36169759 DOI: 10.1007/s10238-022-00897-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) remains an incurable malignancy despite the treatment methods being continually updated. Matrix metalloproteinases (MMPs) promote the progression of HCC; however, no consensus exists on which MMP plays the predominant role in HCCs. In the present study, we analyzed differentially expressed genes in HCCs, especially MMPs, compared with adjacent tissues using the Cancer Genome Atlas database. The KEGG enrichment pathway using differentially expressed genes included extracellular matrix-receptor interaction, which was correlated with MMPs. We found that among the MMP family, only MMP1, MMP3, MMP8, MMP9, MMP11, MMP12, MMP14, MMP15, MMP20, MMP21, and MMP24 significantly increased in HCCs compared with adjacent tissues. Crucially, survival and univariate analyses indicated that only MMPs 1, 9, 12, and 14 predict poor overall survival; however, multivariate Cox analysis and a nomogram demonstrated that only MMP1 is a poor prognostic biomarker for HCCs. In addition, we observed significant enrichment of uncharacterized cells but decreased macrophages in HCC tissues. Consistent with decreased macrophages in HCCs, MMP1 was negatively associated with macrophages but positively correlated with uncharacterized cells, indicating that the main producer of MMP1 is uncharacterized cells. Furthermore, MMP1 expression was negatively correlated with immune responses of HCCs. Taken together, our findings indicated that MMP1 is a poor and predominant prognostic biomarker for patients with HCC and that anti-MMP1 may be a novel therapy that is worth studying in depth.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Hui Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Meimei Yan
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Yuzhalin AE, Yu D. Critical functions of extracellular matrix in brain metastasis seeding. Cell Mol Life Sci 2023; 80:297. [PMID: 37728789 PMCID: PMC10511571 DOI: 10.1007/s00018-023-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Zhao Z, Zheng B, Zheng J, Zhang Y, Jiang C, Nie C, Jiang X, Yao D, Zhao H. Integrative Analysis of Inflammatory Response-Related Gene for Predicting Prognosis and Immunotherapy in Glioma. J Mol Neurosci 2023; 73:608-627. [PMID: 37488455 PMCID: PMC10516783 DOI: 10.1007/s12031-023-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Inflammatory response plays a crucial role in the development and progression of gliomas. Whereas the prognostic esteem of inflammatory response-related genes has never been comprehensively explored in glioma, the RNA-seq information and clinical data of patients with glioma were extracted from TCGA, CGGA, and Rembrandt databases. The differentially expressed genes (DEGs) were picked out between glioma tissue and non-tumor brain tissue (NBT). Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct the prognostic signature in the TCGA cohort and verified in other cohorts. Kaplan-Meier survival analyses were conducted to compare the overall survival (OS) between the high and low-risk groups. Univariate and multivariate Cox analyses were subsequently used to confirm the independent prognostic factors of OS, and then, the nomogram was established based them. Furthermore, immune infiltration, immune checkpoints, and immunotherapy were also probed and compared between high and low-risk groups. The four genes were also analyzed by qRT-PCR, immunohistochemistry, and western blot trials between glioma tissue and NBT. The 39 DEGs were identified between glioma tissue and NBT, of which 31 genes are associated to the prognosis of glioma. The 8 optimal inflammatory response-related genes were selected to construct the prognostic inflammatory response-related signature (IRRS) through the LASSO regression. The effectiveness of the IRRS was verified in the TCGA, CGGA, and Rembrandt cohorts. Meanwhile, a nomogram with better accuracy was established to predict OS based on the independent prognostic factors. The IRRS was highly correlated with clinicopathological features, immune infiltration, and genomic alterations in glioma patients. In addition, four selective genes also verified the difference between glioma tissue and NBT. A novel prognostic signature was associated with the prognosis, immune infiltration, and immunotherapy effect in patients with gliomas. Thus, this study could provide a perspective for glioma prognosis and treatment.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Zhang
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Wu J, Guo Y, Zuo ZF, Zhu ZW, Han L. MMP14 is a diagnostic gene of intrahepatic cholangiocarcinoma associated with immune cell infiltration. World J Gastroenterol 2023; 29:2961-2978. [PMID: 37274806 PMCID: PMC10237093 DOI: 10.3748/wjg.v29.i19.2961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor of the hepatobiliary system with concealed onset, strong invasiveness and poor prognosis.
AIM To explore the disease characteristic genes that may be helpful in the diagnosis of ICC and affect immune cell infiltration.
METHODS We downloaded two ICC-related human gene expression profiles from GEO database as the training group (GSE26566 and GSE32958 datasets) for difference analysis, and performed enrichment analysis on differential genes. The least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), three machine learning algorithms, were used to screen the characteristic genes. Double verification was carried out on GSE107943 and The Cancer Genome Atlas, two verification groups. Receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the diagnostic efficacy of genes for ICC. CIBERSORT and ssGSEA algorithms were used to evaluate the effect of characteristic genes on immune infiltration pattern. Human Protein Atlas (HPA) was used to analyze the protein expression level of the target gene.
RESULTS A total of 1091 differential genes were obtained in the training group. Enrichment analysis showed that the above genes were mainly enriched in small molecular catabolism, complement and coagulation cascade, bile secretion and other functions and pathways. Twenty-five characteristic genes were screened by LASSO regression, 19 by SVM-RFE algorithm, and 30 by RF algorithm. Three algorithms were used in combination to determine the characteristic gene of ICC: MMP14. The verification group confirmed that the genes had a high diagnostic accuracy (AUC values of the training group and the verification group were 0.960, 0.999, and 0.977, respectively). Comprehensive analysis of immune infiltration showed that MMP14 could affect the infiltration of monocytes, activated memory CD4 T cells, resting memory CD4 T cells, and other immune cells, and was closely related to the expression of CD200, cytotoxic T-lymphocyte-associated antigen 4, CD14, CD44, and other immune checkpoints. The results of immunohistochemistry in HPA database showed was indeed overexpressed in ICC.
CONCLUSION MMP14 can be used as a disease characteristic gene of ICC, and may regulate the distribution of immune-infiltrating cells in the ICC tumor microenvironment, which provides a new method for the determination of ICC diagnostic markers and screening of therapeutic targets.
Collapse
Affiliation(s)
- Jun Wu
- China Medical University, The General Hospital of Northern Theater Command Training Base for Graduate, Shenyang 110016, Liaoning Province, China
| | - Yang Guo
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Zhi-Fan Zuo
- Gynecological Radiotherapy Ward, Liaoning Provincial Cancer Hospital, Shenyang 110801, Liaoning province, China
| | - Zi-Wei Zhu
- China Medical University, The General Hospital of Northern Theater Command Training Base for Graduate, Shenyang 110016, Liaoning Province, China
| | - Lei Han
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
9
|
Wu C, Sun W, Shen D, Li H, Tong X, Guo Y. TEM1 up-regulates MMP-2 and promotes ECM remodeling for facilitating invasion and migration of uterine sarcoma. Discov Oncol 2023; 14:5. [PMID: 36639546 PMCID: PMC9839929 DOI: 10.1007/s12672-023-00613-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVES To explore the correlation between tumor endothelial marker 1 (TEM1) and matrix metalloproteinase 2 (MMP-2) in uterine sarcoma and their roles in the progression of uterine sarcoma. METHODS Uterine leiomyosarcoma (uLMS, n = 25) and uterine leiomyoma (n = 25) specimens were collected from a total of 50 patients. Immunohistochemistry assay was conducted to determine the expression of TEM1, MMP-2 and MMP-9. TEM1 over expression (hTEM1) and low expression (shRNA-TEM1) MES-SA cell lines were established as in vitro uterine sarcoma models. MMP-2 mRNA, protein expression and enzymatic activity were verified using qPCR, Western blot and gelatin zymography respectively. MMP-2 expression was downregulated using MMP-2 siRNA in hTEM1 MES-SA cells to better study the role of MMP-2. The invasive and migratory capacities of hTEM1, shRNA-TEM1, and hTEM1 treated with MMP-2 siRNA MES-SA cells were determined using transwell assays. Extracellular matrix (ECM) remodeling mediated by TEM1 was examined using cell-ECM adhesion and fluorescent gelatin-ECM degradation assays. The immunofluorescence of F-actin was examined to analyze the formation of invadopodia. Subcutaneous and intraperitoneal xenografts were established to validate the role of TEM1 in promoting uterine sarcoma metastasis. RESULTS TEM1 and MMP-2 were expressed in 92% (n = 23) and 88% (n = 22) of uterine leiomyosarcoma specimens, respectively. Both TEM1 and MMP-2 were highly expressed in 100% (n = 17) of high stage (III-IV) uterine leiomyosarcoma specimens. In addition, TEM1 expression was positively correlated with MMP-2 expression in uterine leiomyosarcoma. The successful establishment of in vitro uterine sarcoma models was confirmed with qPCR and Western blotting tests. TEM1 promoted the invasion and metastasis of uterine sarcoma in vivo and in vitro. MMP-2 expression and activity were up-regulated in hTEM1 cells but down-regulated in shRNA-TEM1 cells. Importantly, MMP-2 knockdown impaired the invasive and migratory capacity of hTEM1 cells. TEM1 promoted ECM remodeling by increasing cell-ECM adhesion and ECM degradation. TEM1 overexpression also induced the formation of invadopodia. CONCLUSION TEM1 was co-expressed and positively correlated with MMP-2 in uterine leiomyosarcoma specimens. In addition, both TEM1 and MMP-2 were associated with tumor development. TEM1 promoted uterine sarcoma progression by regulating MMP-2 activity and ECM remodeling.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Wenhuizi Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Yi Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
10
|
Jin Y, Liang ZY, Zhou WX, Zhou L. An MMP-based risk score strongly distinguishes prognosis in hepatocellular carcinoma after resection. Future Oncol 2022; 18:2903-2917. [PMID: 35861053 DOI: 10.2217/fon-2021-1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To first explore the prognostic value of MMP11 and MMP15 in hepatocellular carcinoma. Methods: MMP11/MMP15 expression was immunohistochemically detected and correlated with clinicopathologic variables and survival and confirmed in publicly available databases. An MMP-based risk score (MMPRS) was established. Results: Tumoral MMP11/MMP15 expression was higher and univariately associated with crucial clinicopathologic parameters, overall survival and disease-free survival in all patients and/or many subsets. Multivariately, MMP11/MMP15 expression remained significant. Their overexpression and prognostic value were confirmed in the Ualcan and Kaplan-Meier plotter databases. Critically, the novel MMPRS integrating MMP11, MMP15 and tumor-node-metastasis stage identified subgroups with the best and worst prognoses, with much higher predictive power. Conclusion: MMP11 and MMP15 served as prognosticators in hepatocellular carcinoma. MMPRS might work more accurately.
Collapse
Affiliation(s)
- Ye Jin
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
11
|
Target and drug predictions for SARS-CoV-2 infection in hepatocellular carcinoma patients. PLoS One 2022; 17:e0269249. [PMID: 35639708 PMCID: PMC9154116 DOI: 10.1371/journal.pone.0269249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease (COVID-19), which poses a major threat to humans worldwide. With the continuous progress of the pandemic, a growing number of people are infected with SARS-CoV-2, including hepatocellular carcinoma (HCC) patients. However, the relationship between COVID-19 and HCC has not been fully elucidated. In order to provide better treatment for HCC patients infected with SARS-CoV-2, it’s urgently needed to identify common targets and find effective drugs for both. In our study, transcriptomic analysis was performed on both selected lung epithelial cell datasets of COVID-19 patients and the datasets of HCC patients to identify the synergistic effect of COVID-19 in HCC patients. What’s more, common differentially expressed genes were identified, and a protein-protein interactions network was designed. Then, hub genes and basic modules were detected based on the protein-protein interactions network. Next, functional analysis was performed using gene ontology terminology and the Kyoto Encyclopedia of Genes and Genomes pathway. Finally, protein-protein interactions revealed COVID-19 interaction with key proteins associated with HCC and further identified transcription factor (TF) genes and microRNAs (miRNA) with differentially expressed gene interactions and transcription factor activity. This study reveals that COVID-19 and HCC are closely linked at the molecular level and proposes drugs that may play an important role in HCC patients with COVID-19. More importantly, according to the results of our research, two critical drugs, Ilomastat and Palmatine, may be effective for HCC patients with COVID-19, which provides clinicians with a novel therapeutic idea when facing possible complications in HCC patients with COVID-19.
Collapse
|
12
|
Guo D, Zhang X, Cui H, Yu D, Zhang H, Shi X, Pang C, Li J, Guo W, Zhang S. ACADL Functions as a Tumor Suppressor in Hepatocellular Carcinoma Metastasis by Inhibiting Matrix Metalloproteinase 14. Front Oncol 2022; 12:821484. [PMID: 35174091 PMCID: PMC8841782 DOI: 10.3389/fonc.2022.821484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
High aggressiveness is the main reason for the poor prognosis of hepatocellular carcinoma (HCC) patients. However, its molecular mechanisms still remain largely unexplored. ACADL, a mitochondrial enzyme that facilitates the primary regulated step in mitochondrial fatty acid oxidation, plays a role in HCC growth inhibition. However, the function of ACADL in tumor metastasis is not well elucidated. We found that the reduced expression of ACADL is closely associated with the loss of tumor encapsulation, extrahepatic metastasis, and poor prognosis in HCC patients. Upregulation of ACADL significantly inhibited HCC migration and invasion ability. Whereas knockdown of ACADL markedly enhanced cell invasive capability. Expression of matrix metalloproteinase-14 (MMP14) was negatively associated with the content of ACADL in HCC specimens. MMP14-positive patients with a low expression of ACADL showed worse outcome. Treatment with MMP14 agonist reversed the inhibitory effect of ACADL on HCC metastasis. In addition, ACADL negatively regulated MMP14 expression by inhibiting the STAT3 signaling pathway, as the sustained activation of STAT3 effectively restored the level of MMP14 in ACADL-overexpressed cells. Collectively, these findings disclose that ACADL represses HCC metastasis via STAT3-MMP14 pathway. This study may propose a promising strategy for the precise treatment of metastatic HCC patients.
Collapse
Affiliation(s)
- Danfeng Guo
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Honglei Cui
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huapeng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Pang
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Li
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
14
|
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S, Hong T. Immune Infiltration of MMP14 in Pan Cancer and Its Prognostic Effect on Tumors. Front Oncol 2021; 11:717606. [PMID: 34604053 PMCID: PMC8484967 DOI: 10.3389/fonc.2021.717606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. Methods In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Results MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Conclusion MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Sekine T, Takizawa S, Uchimura K, Miyazaki A, Tsuchiya K. Liver-Specific Overexpression of Prostasin Attenuates High-Fat Diet-Induced Metabolic Dysregulation in Mice. Int J Mol Sci 2021; 22:ijms22158314. [PMID: 34361079 PMCID: PMC8348244 DOI: 10.3390/ijms22158314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
The liver has a most indispensable role in glucose and lipid metabolism where we see some of the most serious worldwide health problems. The serine protease prostasin (PRSS8) cleaves toll-like receptor 4 (TLR4) and regulates hepatic insulin sensitivity under PRSS8 knockout condition. However, liver substrate proteins of PRSS8 other than TLR4 and the effect to glucose and lipid metabolism remain unclarified with hepatic elevation of PRSS8 expression. Here we show that high-fat-diet-fed liver-specific PRSS8 transgenic mice improved glucose tolerance and hepatic steatosis independent of body weight. PRSS8 amplified extracellular signal-regulated kinase phosphorylation associated with matrix metalloproteinase 14 activation in vivo and in vitro. Moreover, in humans, serum PRSS8 levels reduced more in type 2 diabetes mellitus (T2DM) patients than healthy controls and were lower in T2DM patients with increased maximum carotid artery intima media thickness (>1.1 mm). These results identify the regulatory mechanisms of PRSS8 overexpression over glucose and lipid metabolism, as well as excessive hepatic fat storage.
Collapse
Affiliation(s)
- Tetsuo Sekine
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
| | - Soichi Takizawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
- Internal Medicine, Yamanashi Prefectural Central Hospital, Kofu 4008506, Japan
| | - Kohei Uchimura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
| | | | - Kyoichiro Tsuchiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
- Correspondence: ; Tel.: +81-55-273-9682
| |
Collapse
|
16
|
Li Y, Su Z, Wei B, Qin M, Liang Z. Bioinformatics analysis identified MMP14 and COL12A1 as immune-related biomarkers associated with pancreatic adenocarcinoma prognosis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5921-5942. [PMID: 34517516 DOI: 10.3934/mbe.2021296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors with high mortality rates and a poor prognosis. There is an urgent need to determine the molecular mechanism of PAAD tumorigenesis and identify promising biomarkers for the diagnosis and targeted therapy of the disease. METHODS Three GEO datasets (GSE62165, GSE15471 and GSE62452) were analyzed to obtain differentially expressed genes (DEGs). The PPI networks and hub genes were identified through the STRING database and MCODE plugin in Cytoscape software. GO and KEGG enrichment pathways were analyzed by the DAVID database. The GEPIA database was utilized to estimate the prognostic value of hub genes. Furthermore, the roles of MMP14 and COL12A1 in immune infiltration and tumor-immune interaction and their biological functions in PAAD were explored by TIMER, TISIDB, GeneMANIA, Metascape and GSEA. RESULTS A total of 209 common DEGs in the three datasets were obtained. GO function analysis showed that the 209 DEGs were significantly enriched in calcium ion binding, serine-type endopeptidase activity, integrin binding, extracellular matrix structural constituent and collagen binding. KEGG pathway analysis showed that DEGs were mainly enriched in focal adhesion, protein digestion and absorption and ECM-receptor interaction. The 14 genes with the highest degree of connectivity were defined as the hub genes of PAAD development. GEPIA revealed that PAAD patients with upregulated MMP14 and COL12A1 expression had poor prognoses. In addition, TIMER analysis revealed that MMP14 and COL12A1 were closely associated with the infiltration levels of macrophages, neutrophils and dendritic cells in PAAD. TISIDB revealed that MMP14 was strongly positively correlated with CD276, TNFSF4, CD70 and TNFSF9, while COL12A1 was strongly positively correlated with TNFSF4, CD276, ENTPD1 and CD70. GSEA revealed that MMP14 and COL12A1 were significantly enriched in epithelial mesenchymal transition, extracellular matrix receptor interaction, apical junction, and focal adhesion in PAAD development. CONCLUSIONS Our study revealed that overexpression of MMP14 and COL12A1 is significantly correlated with PAAD patient poor prognosis. MMP14 and COL12A1 participate in regulating tumor immune interactions and might become promising biomarkers for PAAD.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhou Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Biwei Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|