1
|
Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol 2024; 15:1440065. [PMID: 39149204 PMCID: PMC11325591 DOI: 10.3389/fmicb.2024.1440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.
Collapse
Affiliation(s)
- Adriana S Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Jorge G S Batista
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Murilo Á V Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Velaphi C Thipe
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Luciene A R Minarini
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Patricia S Lopes
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Ademar B Lugão
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| |
Collapse
|
2
|
Bārzdiņa A, Plotniece A, Sobolev A, Pajuste K, Bandere D, Brangule A. From Polymeric Nanoformulations to Polyphenols-Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin. Antibiotics (Basel) 2024; 13:305. [PMID: 38666981 PMCID: PMC11047640 DOI: 10.3390/antibiotics13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Gentamicin is an essential broad-spectrum aminoglycoside antibiotic that is used in over 40 clinical conditions and has shown activity against a wide range of nosocomial, biofilm-forming, multi-drug resistant bacteria. Nevertheless, the low cellular penetration and serious side effects of gentamicin, as well as the fear of the development of antibacterial resistance, has led to a search for ways to circumvent these obstacles. This review provides an overview of the chemical and pharmacological properties of gentamicin and offers six different strategies (the isolation of specific types of gentamicin, encapsulation in polymeric nanoparticles, hydrophobization of the gentamicin molecule, and combinations of gentamicin with other antibiotics, polyphenols, and natural products) that aim to enhance the drug delivery and antibacterial activity of gentamicin. In addition, factors influencing the synthesis of gentamicin-loaded polymeric (poly (lactic-co-glycolic acid) (PLGA) and chitosan) nanoparticles and the methods used in drug release studies are discussed. Potential research directions and future perspectives for gentamicin-loaded drug delivery systems are given.
Collapse
Affiliation(s)
- Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Aiva Plotniece
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
3
|
Dhungana G, Nepal R, Houtak G, Bouras G, Vreugde S, Malla R. Preclinical characterization and in silico safety assessment of three virulent bacteriophages targeting carbapenem-resistant uropathogenic Escherichia coli. Int Microbiol 2024:10.1007/s10123-024-00508-8. [PMID: 38517580 DOI: 10.1007/s10123-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Phage therapy has recently been revitalized in the West with many successful applications against multi-drug-resistant bacterial infections. However, the lack of geographically diverse bacteriophage (phage) genomes has constrained our understanding of phage diversity and its genetics underpinning host specificity, lytic capability, and phage-bacteria co-evolution. This study aims to locally isolate virulent phages against uropathogenic Escherichia coli (E. coli) and study its phenotypic and genomic features. Three obligately virulent Escherichia phages (øEc_Makalu_001, øEc_Makalu_002, and øEc_Makalu_003) that could infect uropathogenic E. coli were isolated and characterized. All three phages belonged to Krischvirus genus. One-step growth curve showed that the latent period of the phages ranged from 15 to 20 min, the outbreak period ~ 50 min, and the burst size ranged between 74 and 127 PFU/bacterium. Moreover, the phages could tolerate a pH range of 6 to 9 and a temperature range of 25-37 °C for up to 180 min without significant loss of phage viability. All phages showed a broad host spectrum and could lyse up to 30% of the 35 tested E. coli isolates. Genomes of all phages were approximately ~ 163 kb with a gene density of 1.73 gene/kbp and an average gene length of ~ 951 bp. The coding density in all phages was approximately 95%. Putative lysin, holin, endolysin, and spanin genes were found in the genomes of all three phages. All phages were strictly virulent with functional lysis modules and lacked any known virulence or toxin genes and antimicrobial resistance genes. Pre-clinical experimental and genomic analysis suggest these phages may be suitable candidates for therapeutic applications.
Collapse
Affiliation(s)
- Gunaraj Dhungana
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal.
- Government of Nepal, Nepal Health Research Council, Kathmandu, Nepal.
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Rajani Malla
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
4
|
Bagińska N, Grygiel I, Orwat F, Harhala MA, Jędrusiak A, Gębarowska E, Letkiewicz S, Górski A, Jończyk-Matysiak E. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:4285. [PMID: 38383718 PMCID: PMC10881977 DOI: 10.1038/s41598-024-54469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Acinetobacter baumannii is currently a serious threat to human health, especially to people with immunodeficiency as well as patients with prolonged hospital stays and those undergoing invasive medical procedures. The ever-increasing percentage of strains characterized by multidrug resistance to widely used antibiotics and their ability to form biofilms make it difficult to fight infections with traditional antibiotic therapy. In view of the above, phage therapy seems to be extremely attractive. Therefore, phages with good storage stability are recommended for therapeutic purposes. In this work, we present the results of studies on the stability of 12 phages specific for A. baumannii under different conditions (including temperature, different pH values, commercially available disinfectants, essential oils, and surfactants) and in the urine of patients with urinary tract infections (UTIs). Based on our long-term stability studies, the most optimal storage method for the A. baumannii phage turned out to be - 70 °C. In contrast, 60 °C caused a significant decrease in phage activity after 1 h of incubation. The tested phages were the most stable at a pH from 7.0 to 9.0, with the most inactivating pH being strongly acidic. Interestingly, ethanol-based disinfectants caused a significant decrease in phage titers even after 30 s of incubation. Moreover, copper and silver nanoparticle solutions also caused a decrease in phage titers (which was statistically significant, except for the Acba_3 phage incubated in silver solution), but to a much lesser extent than disinfectants. However, bacteriophages incubated for 24 h in essential oils (cinnamon and eucalyptus) can be considered stable.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| | | | - Andrzej Górski
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| |
Collapse
|
5
|
Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, Berenjian A, Show PL. Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study. Mol Biotechnol 2023:10.1007/s12033-023-00957-y. [PMID: 37957480 DOI: 10.1007/s12033-023-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.
Collapse
Affiliation(s)
- Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Nakhaeitazreji
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Kakian
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jun Wei Roy Chong
- Faculty of Science and Engineering, Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Feizi S, Awad M, Nepal R, Cooksley CM, Psaltis AJ, Wormald PJ, Vreugde S. Deferiprone-gallium-protoporphyrin (IX): A promising treatment modality against Mycobacterium abscessus. Tuberculosis (Edinb) 2023; 142:102390. [PMID: 37506532 DOI: 10.1016/j.tube.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD) caused by Mycobacterium abscessus is a frequent complication in patients with cystic fibrosis (CF) that worsens lung function over time. Currently, there is no cure for NTM-PD, hence new therapies are urgently required. Disrupting bacterial iron uptake pathways using gallium-protoporphyrin (IX) (GaPP), a heme analog, has been proposed as a novel antibacterial approach to tackle multi-drug resistant M. abscessus. However, the antibacterial activity of GaPP has been tested only in iron-deficient media, which cannot accurately mirror the potential activity in vivo. Herein, we investigated the potential synergistic activity between GaPP and the iron-chelating agent deferiprone (Def) in regular media against M. abscessus-infected macrophages. The safety of the treatment was assessed in vitro using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Nuli-1 and THP-1 cell lines. Def-GaPP had synergistic activity against M. abscessus-infected macrophages where 10 mM-12.5 mg/L of Def-GaPP reduced the viability by up to 0.9 log10. Furthermore, Def-GaPP showed no cytotoxicity to Nuli-1 and THP-1 cell lines at the effective antibacterial concentrations (10 mM-12.5 mg/L) of Def- GaPP. These data encourage future investigation of Def-GaPP as a novel antimicrobial against NTM-PD.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Muhammed Awad
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia; Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Al-Azhar University, Assiut, Egypt
| | - Roshan Nepal
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
8
|
Feizi S, Cooksley CM, Ramezanpour M, Nepal R, Psaltis AJ, Wormald PJ, Vreugde S. Colloidal silver against macrophage infections and biofilms of atypical mycobacteria. Biometals 2023; 36:913-925. [PMID: 36729280 PMCID: PMC10393856 DOI: 10.1007/s10534-023-00494-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Skin and soft tissue infection (SSTI) caused by atypical mycobacteria such as Mycobacterium abscessus and Mycobacterium avium intracellulare complex (MAIC) have increased in recent years. Current therapeutic options are limited, and hence new and better therapies are urgently required. Colloidal Silver (CS) has been identified for its widespread antibacterial properties and silver-impregnated dressings have been used for SSTIs caused by various pathogens. The efficacy of Green Synthesized Colloidal Silver (GSCS) was investigated for bacterial growth inhibition (BGI) using a microdilution method and minimum biofilm eradication concentration (MBEC) using resazurin assay and confocal scanning laser microscopy (CSLM) of M. abscessus (n = 5) and MAIC (n = 5). The antibacterial effect of GSCS against M. abscessus infected macrophages was also evaluated. The in vitro cytotoxicity of GSCS on a human keratinocyte cell line (HaCaT) and neonatal foreskin fibroblasts was analyzed by the crystal violet proliferation assay. Average BGI and MBEC of GSCS varied between 0.7 and 22 ppm for M. abscessus and MAIC. The concentration of 3 ppm reduced M. abscessus-infection in macrophages significantly. GSCS was not cytotoxic to HaCaT and neonatal foreskin fibroblast cells at concentrations < 3 ppm up to 2 h exposure time. GSCS therefore, has the potential for topical application against atypical mycobacterial SSTI.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia.
- The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
9
|
Rajivgandhi G, Chelliah CK, Ramachandran G, Chackaravarthi G, Maruthupandy M, Alharbi NS, Kadaikunnan S, Natesan M, Li WJ, Quero F. Morphological modification of silver nanoparticles against multi-drug resistant gram-negative bacteria and cytotoxicity effect in A549 lung cancer cells through in vitro approaches. Arch Microbiol 2023; 205:282. [PMID: 37432479 DOI: 10.1007/s00203-023-03611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
In the present study, the individual cultures of Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae) were treated with morphologically modified silver nanoparticles (Ag NPs) and were found to display zones of inhibition of ~ 8 mm, 16 mm, 20 mm, and 22 mm (P. mirabilis) and 6 mm, 14 mm, 20 mm, and 24 mm (K. pneumoniae) at concentrations of 25 µg/ml, 50 µg/mL, 75 µg/mL, and 100 µg/mL, respectively. In addition, turbidity tests were performed based on O. D. values, which exhibited 92% and 90% growth inhibitions at 100 µg/mL concentration for P. mirabilis and K. pneumoniae, respectively. Furthermore, the IC50 concentration of Ag NPs was established for A549 lung cancer cells and found to be at 500 µg/mL. Evidently, the morphological variation of Ag NPs treated A549 lung cancer cells was exhibited with differential morphology studied by phase-contrast microscopy. The results demonstrated that the synthesized Ag NPs was not only efficient against gram-positive bacteria but also against gram-negative bacteria and A549 cancer cells, suggesting that the potential of these biosynthesized Ag NPs is a future drug discovery source for inhibiting bacteria and cancer cells.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, 8370456, Chile
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chenthis Kanisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, 629180, India
| | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea.
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Manoharan Natesan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, 8370456, Chile.
| |
Collapse
|
10
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
11
|
Biba R, Cvjetko P, Tkalec M, Košpić K, Štefanić PP, Šikić S, Domijan AM, Balen B. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco ( Nicotiana tabacum) Seedlings Are Coating-Dependent. Int J Mol Sci 2022; 23:15923. [PMID: 36555562 PMCID: PMC9787911 DOI: 10.3390/ijms232415923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Institute of Public Health “Dr. Andrija Štampar”, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Yeo WWY, Maran S, Kong ASY, Cheng WH, Lim SHE, Loh JY, Lai KS. A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175802. [PMID: 36079184 PMCID: PMC9456709 DOI: 10.3390/ma15175802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 06/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of pneumonia in humans, and it is associated with high morbidity and mortality rates, especially in immunocompromised patients. Its high rate of multidrug resistance led to an exploration of novel antimicrobials. Metal nanoparticles have shown potent antibacterial activity, thus instigating their application in MRSA. This review summarizes current insights of Metal-Containing NPs in treating MRSA. This review also provides an in-depth appraisal of opportunities and challenges in utilizing metal-NPs to treat MRSA.
Collapse
Affiliation(s)
- Wendy Wai Yeng Yeo
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Amanda Shen-Yee Kong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (COORA), UCSI University, Cheras 56000, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|