1
|
Meakin AS, Gatford KL, Lien YC, Wiese MD, Simmons RA, Morrison JL. Characterisation of ciclesonide metabolism in human placentae across gestation. Placenta 2024; 154:42-48. [PMID: 38875771 DOI: 10.1016/j.placenta.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Current clinical management of pregnancies at risk of preterm delivery includes maternal antenatal corticosteroid (ACS) treatment. ACS activate the glucocorticoid receptor (GR) in all fetal tissues, maturing the lungs at the cost of impaired brain development, creating a need for novel treatments. The prodrug ciclesonide (CIC) activates the GR only when converted to des-CIC by specific enzymes, including acetylcholinesterase (ACHE) and carboxylesterase 1 and 2 (CES1, CES2). Importantly, the human placenta expresses ACHE and CES, and could potentially produce des-CIC, resulting in systemic fetal exposure and GR activation in all fetal tissues. We therefore investigated CES gene expression and conversion of CIC to des-CIC in human placentae collected during the second trimester (Tri2), and at preterm and term birth. METHODS Differential expression analysis was performed in Tri2 (n = 27), preterm (n = 34), and term (n = 40) placentae using the DESeq2 R-package. Conversion of CIC to des-CIC was measured in a subset of placenta samples (Tri2 n = 7, preterm n = 26, term n = 20) using functional assays. RESULTS ACHE mRNA expression was higher in Tri2 male than preterm and term male placentae only, whereas CES1 mRNA expression was higher in Tri2 than preterm or term placentae of both sexes. Conversion of CIC to des-CIC did not differ between gestational ages. DISCUSSION Conversion of CIC to des-CIC by the human placenta may preclude its use as a novel GR-agonist in threatened preterm birth. In vivo studies are required to confirm the extent to which placental activation occurs after maternal treatment.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Yu-Chin Lien
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, Australia
| | - Rebecca A Simmons
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Antiproliferative Activity of Two Unusual Dimeric Flavonoids, Brachydin E and Brachydin F, Isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In Vitro and Molecular Docking Evaluation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3319203. [PMID: 35187163 PMCID: PMC8856817 DOI: 10.1155/2022/3319203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Despite the breakthrough in the development of anticancer therapies, plant-derived chemotherapeutics continue to be the basis of treatment for most types of cancers. Fridericia platyphylla is a shrub found in Brazilian cerrado biome which has cytotoxic, anti-inflammatory, and analgesic properties. The aim of this study was to investigate the antiproliferative potential of the crude hydroethanolic extract, subfraction (containing 59.3% of unusual dimeric flavonoids Brachydin E and 40.7% Brachydin F), as well as Brachydin E and Brachydin F isolated from F. platyphylla roots. The cytotoxic activity was evaluated in glioblastoma, lung, prostate, and colorectal human tumor cell lines. The crude hydroethanolic extract did not present cytotoxic activity, but its subfraction presented lower IC50 values for glioblastoma (U-251) and prostate adenocarcinoma (PC-3) cell lines. Brachydins E and F significantly reduced cell viability, proliferation, and clonogenic potential of PC-3, inducing them to the process of regulated cell death. In silico studies have indicated nuclear receptors as targets for Brachydins E and F, and molecular docking has pointed out their binding into glucocorticoid receptor (GR) ligand pocket. Targeting GR pathway has been described as a therapeutic strategy, especially for prostate cancer. These results suggest that Brachydin E and Brachydin F are promising compounds to be further explored for their antitumor effects.
Collapse
|
3
|
CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Sci Rep 2021; 11:18380. [PMID: 34526543 PMCID: PMC8443613 DOI: 10.1038/s41598-021-97058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
The imprinted H19 long non-coding RNA, a knowing oncofetal gene, presents a controversial role during the carcinogenesis process since its tumor suppressor or oncogenic activity is not completely elucidated. Since H19 lncRNA is involved in many biological pathways related to tumorigenesis, we sought to develop a non-cancer lineage with CRISPR-Cas9-mediated H19 knockdown (H19-) and observe the changes in a cellular context. To edit the promoter region of H19, two RNA guides were designed, and the murine C2C12 myoblast cells were transfected. H19 deletion was determined by DNA sequencing and gene expression by qPCR. We observed a small deletion (~ 60 bp) in the promoter region that presented four predicted transcription binding sites. The deletion reduced H19 expression (30%) and resulted in increased proliferative activity, altered morphological patterns including cell size and intracellular granularity, without changes in viability. The increased proliferation rate in the H19- cell seems to facilitate chromosomal abnormalities. The H19- myoblast presented characteristics similar to cancer cells, therefore the H19 lncRNA may be an important gene during the initiation of the tumorigenic process. Due to CRISPR/Cas9 permanent edition, the C2C12 H19- knockdown cells allows functional studies of H19 roles in tumorigenesis, prognosis, metastases, as well as drug resistance and targeted therapy.
Collapse
|
4
|
Meakin AS, Cuffe JSM, Darby JRT, Morrison JL, Clifton VL. Let's Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female- and Male-Specific Fetal Growth and Developmental Outcomes. Int J Mol Sci 2021; 22:6386. [PMID: 34203717 PMCID: PMC8232290 DOI: 10.3390/ijms22126386] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
It is well understood that sex differences exist between females and males even before they are born. These sex-dependent differences may contribute to altered growth and developmental outcomes for the fetus. Based on our initial observations in the human placenta, we hypothesised that the male prioritises growth pathways in order to maximise growth through to adulthood, thereby ensuring the greatest chance of reproductive success. However, this male-specific "evolutionary advantage" likely contributes to males being less adaptable to shifts in the in-utero environment, which then places them at a greater risk for intrauterine morbidities or mortality. Comparatively, females are more adaptable to changes in the in-utero environment at the cost of growth, which may reduce their risk of poor perinatal outcomes. The mechanisms that drive these sex-specific adaptations to a change in the in-utero environment remain unclear, but an increasing body of evidence within the field of developmental biology would suggest that alterations to placental function, as well as the feto-placental hormonal milieu, is an important contributing factor. Herein, we have addressed the current knowledge regarding sex-specific intrauterine growth differences and have examined how certain pregnancy complications may alter these female- and male-specific adaptations.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Vicki L. Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Carolina E, Kato T, Khanh VC, Moriguchi K, Yamashita T, Takeuchi K, Hamada H, Ohneda O. Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway. Front Med (Lausanne) 2018; 5:276. [PMID: 30324106 PMCID: PMC6173212 DOI: 10.3389/fmed.2018.00276] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear. Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs. Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully.
Collapse
Affiliation(s)
- Erica Carolina
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Toshiki Kato
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kana Moriguchi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kosuke Takeuchi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates dexamethasone-induced inhibitory effects on the proliferation of cultured progenitor cells obtained from adult rat hippocampus. J Steroid Biochem Mol Biol 2015; 145:38-48. [PMID: 25305353 DOI: 10.1016/j.jsbmb.2014.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids, hormones that are released in response to stress, induce neuronal cell damage. The hippocampus is a primary target of glucocorticoids in the brain, the effects of which include the suppression of cell proliferation and diminished neurogenesis in the dentate gyrus. Our previous study found that melatonin, synthesized primarily in the pineal, pretreatment prevented the negative effects of dexamethasone, the glucocorticoid receptor agonist, on behavior and neurogenesis in rat hippocampus. In the present study, we attempted to investigate the interrelationship between melatonin and dexamethasone on the underlying mechanism of neural stem cell proliferation. Addition of dexamethasone to hippocampal progenitor cells from eight-week old rats resulted in a decrease in the number of neurospheres; pretreatment with melatonin precluded these effects. The immunocytochemical analyses indicated a reduction of Ki67 and nestin-positive cells in the dexamethasone-treated group, which was minimized by melatonin pretreatment. A reduction of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and G1-S phase cell cycle regulators cyclin E and CDK2 in dexamethasone-treated progenitor cells were prevented by pretreatment of melatonin. Moreover, luzindole, a melatonin receptor antagonist blocked the positive effect of melatonin whereas RU48, the glucocorticoid receptor antagonist blocked the negative effect of dexamethasone on the number of neurospheres. Moreover, we also found that dexamethasone increased the glucocorticoid receptor protein but decreased the level of MT1 melatonin receptor, whereas melatonin increased the level of MT1 melatonin receptor but decreased the glucocorticoid receptor protein. These suggest the crosstalk and cross regulation between the melatonin receptor and the glucocorticoid receptor on hippocampal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kasima Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
7
|
Fang YY, Li D, Cao C, Li CY, Li TT. Glucocorticoid receptor repression mediated by BRCA1 inactivation in ovarian cancer. BMC Cancer 2014; 14:188. [PMID: 24629067 PMCID: PMC4004164 DOI: 10.1186/1471-2407-14-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND BRCA mutations are the main known hereditary factor for ovarian cancer. Notably, emerging evidence indicates that the glucocorticoid receptor (GR) has drawn considerable interest in ovarian cancer development. However, dynamic cross-talk between BRCA1 and GR signaling pathways are poorly understood. METHODS The regulatory effects of BRCA on GR were assessed in 146 serous ovarian cancer patients (28 pairs of BRCA1-mutated or not, 23 pairs of BRCA2-mutated or not, and 22 pairs with hypermethylated BRCA1 promoter or not). BRCA1 promoter methylation was analyzed by bisulfite sequencing using primers flanking the core promoter region. Expression levels of BRCA1 and GR were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and GR expression levels. The knockdown and overexpression of BRCA1 were achieved using a lentiviral vector in 293 T cells, SKOV3 ovarian cancer cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. RESULTS GR expression levels were unchanged in non-BRCA1-mutated, non-BRCA2-mutated and BRCA2-mutated ovarian cancer compared to their normal tissues; BRCA1 repression (BRCA1 mutation or BRCA1 promoter hypermethylation) ovarian cancer showed decreased GR levels compared to normal tissue; there was a positive correlation between BRCA1 and GR expression in human ovarian cancer specimens; BRCA1 knockdown was effective at inhibiting GR expression, and overexpression of BRCA1 induces an increase in GR levels in ovarian cancer cells. CONCLUSIONS These results suggest that GR may be a potential target for BRCA1 in ovarian cancer progression.
Collapse
Affiliation(s)
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | | | | | | |
Collapse
|
8
|
Increased expression of BAG-1 in rat brain cortex after traumatic brain injury. J Mol Histol 2012; 43:335-42. [DOI: 10.1007/s10735-012-9408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022]
|