1
|
Experimental Study of Reinforcement Learning in Mobile Robots Through Spiking Architecture of Thalamo-Cortico-Thalamic Circuitry of Mammalian Brain. ROBOTICA 2019. [DOI: 10.1017/s0263574719001632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYIn this paper, the behavioral learning of robots through spiking neural networks is studied in which the architecture of the network is based on the thalamo-cortico-thalamic circuitry of the mammalian brain. According to a variety of neurons, the Izhikevich model of single neuron is used for the representation of neuronal behaviors. One thousand and ninety spiking neurons are considered in the network. The spiking model of the proposed architecture is derived and prepared for the learning problem of robots. The reinforcement learning algorithm is based on spike-timing-dependent plasticity and dopamine release as a reward. It results in strengthening the synaptic weights of the neurons that are involved in the robot’s proper performance. Sensory and motor neurons are placed in the thalamus and cortical module, respectively. The inputs of thalamo-cortico-thalamic circuitry are the signals related to distance of the target from robot, and the outputs are the velocities of actuators. The target attraction task is used as an example to validate the proposed method in which dopamine is released when the robot catches the target. Some simulation studies, as well as experimental implementation, are done on a mobile robot named Tabrizbot. Experimental studies illustrate that after successful learning, the meantime of catching target is decreased by about 36%. These prove that through the proposed method, thalamo-cortical structure could be trained successfully to learn to perform various robotic tasks.
Collapse
|
2
|
Couraud M, Cattaert D, Paclet F, Oudeyer PY, de Rugy A. Model and experiments to optimize co-adaptation in a simplified myoelectric control system. J Neural Eng 2019; 15:026006. [PMID: 28832013 DOI: 10.1088/1741-2552/aa87cf] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. APPROACH We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. RESULTS First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. SIGNIFICANCE The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
Collapse
Affiliation(s)
- M Couraud
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, France
| | | | | | | | | |
Collapse
|
3
|
Malerba P, Rulkov NF, Bazhenov M. Large time step discrete-time modeling of sharp wave activity in hippocampal area CA3. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2019; 72:162-175. [PMID: 33814862 PMCID: PMC8015963 DOI: 10.1016/j.cnsns.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reduced models of neuronal spiking activity simulated with a fixed integration time are frequently used in studies of spatio-temporal dynamics of neurobiological networks. The choice of fixed time step integration provides computational simplicity and efficiency, especially in cases dealing with large number of neurons and synapses operating at a different level of activity across the population at any given time. A network model tuned to generate a particular type of oscillations or wave patterns is sensitive to the intrinsic properties of neurons and synapses and, therefore, commonly susceptible to changes the time step of integration. In this study, we analyzed a model of sharp-wave activity in the network of hippocampal area CA3, to examine how an increase of the integration time step affects network behavior and to propose adjustments of intrinsic properties neurons and synapses that help minimize or remove the damage caused by the time step increase.
Collapse
Affiliation(s)
- Paola Malerba
- Department of Medicine, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
- Department of Cognitive Sciences, University of California
Irvine, Irvine, CA 92697-5100, United States
| | - Nikolai F. Rulkov
- BioCircuits Institute, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
| |
Collapse
|
4
|
Mulugeta L, Drach A, Erdemir A, Hunt CA, Horner M, Ku JP, Myers JG, Vadigepalli R, Lytton WW. Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience. Front Neuroinform 2018; 12:18. [PMID: 29713272 PMCID: PMC5911506 DOI: 10.3389/fninf.2018.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
Collapse
Affiliation(s)
| | - Andrew Drach
- The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - C A Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | | | - Joy P Ku
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - William W Lytton
- Department of Neurology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Physiology and Pharmacology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Neurology, Kings County Hospital Center, New York, NY, United States
| |
Collapse
|
5
|
Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm. Front Neurosci 2016; 10:28. [PMID: 26903796 PMCID: PMC4746359 DOI: 10.3389/fnins.2016.00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023] Open
Abstract
Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA
| | - Kan Li
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - Samuel A Neymotin
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA
| | - Joseph T Francis
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA; BME Cullen College of Engineering, University of HoustonHouston, TX, USA
| | - Jose C Principe
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA; Department of Neurology, State University of New York Downstate Medical CenterBrooklyn, NY, USA; Department of Neurology, Kings County Hospital CenterBrooklyn, NY, USA
| |
Collapse
|
6
|
Lee G, Matsunaga A, Dura-Bernal S, Zhang W, Lytton WW, Francis JT, Fortes JA. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models. ACTA ACUST UNITED AC 2015; 3:1-23. [PMID: 26702394 PMCID: PMC4685709 DOI: 10.1186/s40244-014-0012-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.
Collapse
Affiliation(s)
- Giljae Lee
- Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 216 Larsen Hall, Gainesville 32611, FL, USA
| | - Andréa Matsunaga
- Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 216 Larsen Hall, Gainesville 32611, FL, USA
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA
| | - Wenjie Zhang
- Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 216 Larsen Hall, Gainesville 32611, FL, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Department of Neurology, State University New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Department of Neurology, Kings County Hospital, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Joint Program in Biomedical Engineering at Polytechnic Institute of New York University and State University of New York Downstate, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Program in Neural and Behavioral Science at State University of New York Downstate, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA ; The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Joseph T Francis
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Joint Program in Biomedical Engineering at Polytechnic Institute of New York University and State University of New York Downstate, 450 Clarkson Avenue, Brooklyn 11203, NY, USA ; Program in Neural and Behavioral Science at State University of New York Downstate, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA ; The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - José Ab Fortes
- Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 216 Larsen Hall, Gainesville 32611, FL, USA ; Department of Computer and Information Science and Engineering, University of Florida, P.O. Box 116120, E301 CSE Building, Gainesville 32611, FL, USA
| |
Collapse
|
7
|
Dura-Bernal S, Kerr CC, Neymotin SA, Suter BA, Shepherd GMG, Francis JT, Lytton WW. Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. BMC Neurosci 2015. [PMCID: PMC4697494 DOI: 10.1186/1471-2202-16-s1-p153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Dura-Bernal S, Zhou X, Neymotin SA, Przekwas A, Francis JT, Lytton WW. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm. Front Neurorobot 2015; 9:13. [PMID: 26635598 PMCID: PMC4658435 DOI: 10.3389/fnbot.2015.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA
| | | | - Samuel A Neymotin
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA
| | | | - Joseph T Francis
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center Brooklyn, NY, USA ; Joint Graduate Program in Biomedical Engineering, State University of New York Downstate and Polytechnic Institute of New York University Brooklyn, NY, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center Brooklyn, NY, USA ; Joint Graduate Program in Biomedical Engineering, State University of New York Downstate and Polytechnic Institute of New York University Brooklyn, NY, USA ; Department of Neurology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; Department of Neurology, Kings County Hospital Center Brooklyn, NY, USA
| |
Collapse
|
9
|
Kocaturk M, Gulcur HO, Canbeyli R. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control. Front Neurorobot 2015; 9:8. [PMID: 26321943 PMCID: PMC4531252 DOI: 10.3389/fnbot.2015.00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain–machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.
Collapse
Affiliation(s)
- Mehmet Kocaturk
- Institute of Biomedical Engineering, Bogazici University , Istanbul , Turkey ; Department of Biomedical Engineering, Istanbul Medipol University , Istanbul , Turkey
| | - Halil Ozcan Gulcur
- Institute of Biomedical Engineering, Bogazici University , Istanbul , Turkey
| | - Resit Canbeyli
- Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
10
|
Lytton WW, Neymotin SA, Kerr CC. Multiscale modeling for clinical translation in neuropsychiatric disease. ACTA ACUST UNITED AC 2014; 1. [PMID: 26925364 PMCID: PMC4766859 DOI: 10.1186/2194-3990-1-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiscale modeling of neuropsychiatric illness bridges scales of clinical importance: from the highest scales (presentation of behavioral signs and symptoms), through intermediate scales (clinical testing and surgical intervention), down to the molecular scale of pharmacotherapy. Modeling of brain disease is difficult compared to modeling of other organs, because dysfunction manifests at scales where measurements are rudimentary due both to inadequate access (memory and cognition) and to complexity (behavior). Nonetheless, we can begin to explore these aspects through the use of information-theoretic measures as stand-ins for meaning at the top scales. We here describe efforts across five disorders: Parkinson’s, Alzheimer’s, stroke, schizophrenia, and epilepsy. We look at the use of therapeutic brain stimulation to replace lost neural signals, a loss that produces diaschisis, defined as activity changes in other brain areas due to missing inputs. These changes may in some cases be compensatory, hence beneficial, but in many cases a primary pathology, whether itself static or dynamic, sets in motion a series of dynamic consequences that produce further pathology. The simulations presented here suggest how diaschisis can be reversed by using a neuroprosthetic signal. Despite having none of the information content of the lost physiological signal, the simplified neuroprosthetic signal can restore a diaschitic area to near-normal patterns of activity. Computer simulation thus begins to explain the remarkable success of stimulation technologies - deep brain stimulation, transcranial magnetic stimulation, ultrasound stimulation, transcranial direct current stimulation - across an extremely broad range of pathologies. Multiscale modeling can help us to optimize and integrate these neuroprosthetic therapies by taking into consideration effects of different stimulation protocols, combinations of stimulation with neuropharmacological therapy, and interplay of these therapeutic modalities with particular patterns of disease focality, dynamics, and prior therapies.
Collapse
Affiliation(s)
- William W Lytton
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Neurology, Kings County Hospital, Brooklyn, NY 11203, USA
| | - Samuel A Neymotin
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Cliff C Kerr
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|