1
|
Sinha K, Ghosh N, Sil PC. Harnessing machine learning in contemporary tobacco research. Toxicol Rep 2025; 14:101877. [PMID: 39844883 PMCID: PMC11750557 DOI: 10.1016/j.toxrep.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Machine learning (ML) has the potential to transform tobacco research and address the urgent public health crisis posed by tobacco use. Despite the well-documented health risks, cessation rates remain low. ML techniques offer innovative solutions by analyzing vast datasets to uncover patterns in smoking behavior, genetic predispositions, and effective cessation strategies. ML can predict smoking-induced non-communicable diseases (SiNCDs) like lung cancer and postmenopausal osteoporosis by identifying biomarkers and genetic profiles, generating personalized predictions, and guiding interventions. It also improves prediction of infant tobacco smoke exposure, distinguishes secondhand and thirdhand smoke, and enhances protection strategies for children. Data-driven, personalized approaches using ML track real-time data for personalized feedback and offer timely interventions, continuously improving cessation strategies. Overall, ML provides sophisticated predictive models, enhances understanding of complex biological mechanisms, and enables personalized interventions, demonstrating significant potential in the fight against the tobacco epidemic.
Collapse
Affiliation(s)
| | | | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
2
|
Afrifa‐Yamoah E, Adua E, Peprah‐Yamoah E, Anto EO, Opoku‐Yamoah V, Acheampong E, Macartney MJ, Hashmi R. Pathways to chronic disease detection and prediction: Mapping the potential of machine learning to the pathophysiological processes while navigating ethical challenges. Chronic Dis Transl Med 2025; 11:1-21. [PMID: 40051825 PMCID: PMC11880127 DOI: 10.1002/cdt3.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 03/09/2025] Open
Abstract
Chronic diseases such as heart disease, cancer, and diabetes are leading drivers of mortality worldwide, underscoring the need for improved efforts around early detection and prediction. The pathophysiology and management of chronic diseases have benefitted from emerging fields in molecular biology like genomics, transcriptomics, proteomics, glycomics, and lipidomics. The complex biomarker and mechanistic data from these "omics" studies present analytical and interpretive challenges, especially for traditional statistical methods. Machine learning (ML) techniques offer considerable promise in unlocking new pathways for data-driven chronic disease risk assessment and prognosis. This review provides a comprehensive overview of state-of-the-art applications of ML algorithms for chronic disease detection and prediction across datasets, including medical imaging, genomics, wearables, and electronic health records. Specifically, we review and synthesize key studies leveraging major ML approaches ranging from traditional techniques such as logistic regression and random forests to modern deep learning neural network architectures. We consolidate existing literature to date around ML for chronic disease prediction to synthesize major trends and trajectories that may inform both future research and clinical translation efforts in this growing field. While highlighting the critical innovations and successes emerging in this space, we identify the key challenges and limitations that remain to be addressed. Finally, we discuss pathways forward toward scalable, equitable, and clinically implementable ML solutions for transforming chronic disease screening and prevention.
Collapse
Affiliation(s)
| | - Eric Adua
- Rural Clinical School, Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | | | - Enoch O. Anto
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Victor Opoku‐Yamoah
- School of Optometry and Vision ScienceUniversity of WaterlooWaterlooOntarioCanada
| | - Emmanuel Acheampong
- Department of Genetics and Genome BiologyLeicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Michael J. Macartney
- Faculty of Science Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Rashid Hashmi
- Rural Clinical School, Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res 2024; 72:1217-1228. [DOI: https:/doi.org/10.1007/s12026-024-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 01/06/2025]
|
4
|
Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res 2024; 72:1217-1228. [PMID: 39235526 DOI: 10.1007/s12026-024-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The complex relationship between natural killer (NK) cells and dendritic cells (DCs) within the tumor microenvironment significantly impacts the success of cancer immunotherapy. Recent advancements in cancer treatment have sought to bolster innate and adaptive immune responses through diverse modalities, aiming to tilt the immune equilibrium toward tumor elimination. Optimal antitumor immunity entails a multifaceted interplay involving NK cells, T cells and DCs, orchestrating immune effector functions. Although DC-based vaccines and NK cells' cytotoxic capabilities hold substantial therapeutic potential, their interaction is frequently hindered by immunosuppressive elements such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells. Chemokines and cytokines, such as CXCL12, CCL2, interferons, and interleukins, play crucial roles in modulating NK/DC interactions and enhancing immune responses. This review elucidates the mechanisms underlying NK/DC interaction, emphasizing their pivotal roles in augmenting antitumor immune responses and the impediments posed by tumor-induced immunosuppression. Furthermore, it explores the therapeutic prospects of restoring NK/DC crosstalk, highlighting the significance of molecules like Sema3E/PlexinD1 in this context, offering potential avenues for enhancing the effectiveness of current immunotherapeutic strategies and advancing cancer treatment paradigms. Harnessing the dynamic interplay between NK and DC cells, including the modulation of Sema3E/PlexinD1 signaling, holds promise for developing more potent therapies that harness the immune system's full potential in combating cancer.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan.
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Azraida Hajar
- Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
5
|
Singh S, Shukla G, Agrawal R, Dhule C, Allabun S, Alqahtani MS, Othman M, Abbas M, Soufiene BO. Enhancing genomic disorder prediction through Feynman Concordance and Interpolated Nearest Centroid techniques. Sci Rep 2024; 14:27653. [PMID: 39532919 PMCID: PMC11557834 DOI: 10.1038/s41598-024-72923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Clinical biomedical applications of genomic technologies are extensive and provide possibilities to enhance healthcare covering the span of medical talents. Genome disorder prediction is an important issue in biomedical research. Genome disorders cause multivariate diseases such as cancer, dementia, diabetes, Leigh syndrome, etc. Existing machine and deep learning-based methods were introduced to forecast genome disorders. However, the genome prediction outcomes were not sufficient. To address this issue, propose a new method called Quadratic Feynman Polynomial Interpolated and Vector Nearest Centroid-based (QFPI-VNC) for acutely predicting the genome disorder with improved sensitivity and specificity. First, we utilized medical data about children from a public genomes dataset and applied it to Linear Quadratic and Feynman Kac Genome filtering to obtain computationally efficient filtered results. Next, the results are fed to the Concordance Correlated Polynomial Interpolation with the purpose of extracting genome wide data in an accurate manner. Finally, the features extracted are fused and fed to the Support Vector and Nearest Centroid model for genome disorder prediction. Experimental investigations of the proposed method employing the genome dataset confirm that the performance of the proposed method is prospective and in the scope of acceptance with relative to state-of-the-art methods in terms of convergence speed, recognition rate, sensitivity, and specificity. Results suggest that the QFPI-VNC method produces the best performance with a higher genome disease detection rate by 14%, accuracy by 11%, sensitivity by 14% specificity by 12%, and lesser convergence speed by 29% than compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Sofia Singh
- Department of AI, ASET, Amity University, Noida, UP, India
| | | | - Rahul Agrawal
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering Nagpur, Nagpur, Maharashtra, India
| | - Chetan Dhule
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering Nagpur, Nagpur, Maharashtra, India
| | - Sarah Allabun
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Manal Othman
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
6
|
Simpson S, Zhong W, Mehdipour S, Armaneous M, Sathish V, Walker N, Said ET, Gabriel RA. Classifying High-Risk Patients for Persistent Opioid Use After Major Spine Surgery: A Machine-Learning Approach. Anesth Analg 2024; 139:690-699. [PMID: 39284134 DOI: 10.1213/ane.0000000000006832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND Persistent opioid use is a common occurrence after surgery and prolonged exposure to opioids may result in escalation and dependence. The objective of this study was to develop machine-learning-based predictive models for persistent opioid use after major spine surgery. METHODS Five classification models were evaluated to predict persistent opioid use: logistic regression, random forest, neural network, balanced random forest, and balanced bagging. Synthetic Minority Oversampling Technique was used to improve class balance. The primary outcome was persistent opioid use, defined as patient reporting to use opioids after 3 months postoperatively. The data were split into a training and test set. Performance metrics were evaluated on the test set and included the F1 score and the area under the receiver operating characteristics curve (AUC). Feature importance was ranked based on SHapley Additive exPlanations (SHAP). RESULTS After exclusion (patients with missing follow-up data), 2611 patients were included in the analysis, of which 1209 (46.3%) continued to use opioids 3 months after surgery. The balanced random forest classifiers had the highest AUC (0.877, 95% confidence interval [CI], 0.834-0.894) compared to neural networks (0.729, 95% CI, 0.672-0.787), logistic regression (0.709, 95% CI, 0.652-0.767), balanced bagging classifier (0.859, 95% CI, 0.814-0.905), and random forest classifier (0.855, 95% CI, 0.813-0.897). The balanced random forest classifier had the highest F1 (0.758, 95% CI, 0.677-0.839). Furthermore, the specificity, sensitivity, precision, and accuracy were 0.883, 0.700, 0.836, and 0.780, respectively. The features based on SHAP analysis with the highest impact on model performance were age, preoperative opioid use, preoperative pain scores, and body mass index. CONCLUSIONS The balanced random forest classifier was found to be the most effective model for identifying persistent opioid use after spine surgery.
Collapse
Affiliation(s)
- Sierra Simpson
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - William Zhong
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Soraya Mehdipour
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Michael Armaneous
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, California
| | - Varshini Sathish
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Natalie Walker
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Engy T Said
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Rodney A Gabriel
- From the Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, California
- Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| |
Collapse
|
7
|
Liu W, Chen J, Wang H, Fu Z, Peijnenburg WJGM, Hong H. Perspectives on Advancing Multimodal Learning in Environmental Science and Engineering Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39226136 DOI: 10.1021/acs.est.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The environment faces increasing anthropogenic impacts, resulting in a rapid increase in environmental issues that undermine the natural capital essential for human wellbeing. These issues are complex and often influenced by various factors represented by data with different modalities. While machine learning (ML) provides data-driven tools for addressing the environmental issues, the current ML models in environmental science and engineering (ES&E) often neglect the utilization of multimodal data. With the advancement in deep learning, multimodal learning (MML) holds promise for comprehensive descriptions of the environmental issues by harnessing data from diverse modalities. This advancement has the potential to significantly elevate the accuracy and robustness of prediction models in ES&E studies, providing enhanced solutions for various environmental modeling tasks. This perspective summarizes MML methodologies and proposes potential applications of MML models in ES&E studies, including environmental quality assessment, prediction of chemical hazards, and optimization of pollution control techniques. Additionally, we discuss the challenges associated with implementing MML in ES&E and propose future research directions in this domain.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haobo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
8
|
Carreras-Puigvert J, Spjuth O. Artificial intelligence for high content imaging in drug discovery. Curr Opin Struct Biol 2024; 87:102842. [PMID: 38797109 DOI: 10.1016/j.sbi.2024.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Artificial intelligence (AI) and high-content imaging (HCI) are contributing to advancements in drug discovery, propelled by the recent progress in deep neural networks. This review highlights AI's role in analysis of HCI data from fixed and live-cell imaging, enabling novel label-free and multi-channel fluorescent screening methods, and improving compound profiling. HCI experiments are rapid and cost-effective, facilitating large data set accumulation for AI model training. However, the success of AI in drug discovery also depends on high-quality data, reproducible experiments, and robust validation to ensure model performance. Despite challenges like the need for annotated compounds and managing vast image data, AI's potential in phenotypic screening and drug profiling is significant. Future improvements in AI, including increased interpretability and integration of multiple modalities, are expected to solidify AI and HCI's role in drug discovery.
Collapse
Affiliation(s)
- Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratories, Uppsala University, Sweden.
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratories, Uppsala University, Sweden.
| |
Collapse
|
9
|
Dhruba SR, Sahni S, Wang B, Wu D, Rajagopal PS, Schmidt Y, Shulman ED, Sinha S, Sammut SJ, Caldas C, Wang K, Ruppin E. The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598770. [PMID: 39372749 PMCID: PMC11451622 DOI: 10.1101/2024.06.14.598770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of diverse cell types whose interactions govern tumor growth and clinical outcome. While the TME's impact on immunotherapy has been extensively studied, its role in chemotherapy response remains less explored. To address this, we developed DECODEM (DEcoupling Cell-type-specific Outcomes using DEconvolution and Machine learning), a generic computational framework leveraging cellular deconvolution of bulk transcriptomics to associate the gene expression of individual cell types in the TME with clinical response. Employing DECODEM to analyze the gene expression of breast cancer (BC) patients treated with neoadjuvant chemotherapy, we find that the gene expression of specific immune cells (myeloid, plasmablasts, B-cells) and stromal cells (endothelial, normal epithelial, CAFs) are highly predictive of chemotherapy response, going beyond that of the malignant cells. These findings are further tested and validated in a single-cell cohort of triple negative breast cancer. To investigate the possible role of immune cell-cell interactions (CCIs) in mediating chemotherapy response, we extended DECODEM to DECODEMi to identify such CCIs, validated in single-cell data. Our findings highlight the importance of active pre-treatment immune infiltration for chemotherapy success. The tools developed here are made publicly available and are applicable for studying the role of the TME in mediating response from readily available bulk tumor expression in a wide range of cancer treatments and indications.
Collapse
Affiliation(s)
- Saugato Rahman Dhruba
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sahil Sahni
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Binbin Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yael Schmidt
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D. Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Carlos Caldas
- Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Sinha S, Vegesna R, Mukherjee S, Kammula AV, Dhruba SR, Wu W, Kerr DL, Nair NU, Jones MG, Yosef N, Stroganov OV, Grishagin I, Aldape KD, Blakely CM, Jiang P, Thomas CJ, Benes CH, Bivona TG, Schäffer AA, Ruppin E. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. NATURE CANCER 2024; 5:938-952. [PMID: 38637658 DOI: 10.1038/s43018-024-00756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.
Collapse
Affiliation(s)
- Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
| | - Rahulsimham Vegesna
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sumit Mukherjee
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Ashwin V Kammula
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
- University of Maryland, College Park, MD, USA
| | | | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Matthew G Jones
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute, Cambridge, MA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
| | | | - Ivan Grishagin
- Rancho BioSciences, San Diego, CA, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, CA, USA
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Barakat A, Munro G, Heegaard AM. Finding new analgesics: Computational pharmacology faces drug discovery challenges. Biochem Pharmacol 2024; 222:116091. [PMID: 38412924 DOI: 10.1016/j.bcp.2024.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Despite the worldwide prevalence and huge burden of pain, pain is an undertreated phenomenon. Currently used analgesics have several limitations regarding their efficacy and safety. The discovery of analgesics possessing a novel mechanism of action has faced multiple challenges, including a limited understanding of biological processes underpinning pain and analgesia and poor animal-to-human translation. Computational pharmacology is currently employed to face these challenges. In this review, we discuss the theory, methods, and applications of computational pharmacology in pain research. Computational pharmacology encompasses a wide variety of theoretical concepts and practical methodological approaches, with the overall aim of gaining biological insight through data acquisition and analysis. Data are acquired from patients or animal models with pain or analgesic treatment, at different levels of biological organization (molecular, cellular, physiological, and behavioral). Distinct methodological algorithms can then be used to analyze and integrate data. This helps to facilitate the identification of biological molecules and processes associated with pain phenotype, build quantitative models of pain signaling, and extract translatable features between humans and animals. However, computational pharmacology has several limitations, and its predictions can provide false positive and negative findings. Therefore, computational predictions are required to be validated experimentally before drawing solid conclusions. In this review, we discuss several case study examples of combining and integrating computational tools with experimental pain research tools to meet drug discovery challenges.
Collapse
Affiliation(s)
- Ahmed Barakat
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | | | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Liu M, Li S, Yuan H, Ong MEH, Ning Y, Xie F, Saffari SE, Shang Y, Volovici V, Chakraborty B, Liu N. Handling missing values in healthcare data: A systematic review of deep learning-based imputation techniques. Artif Intell Med 2023; 142:102587. [PMID: 37316097 DOI: 10.1016/j.artmed.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The proper handling of missing values is critical to delivering reliable estimates and decisions, especially in high-stakes fields such as clinical research. In response to the increasing diversity and complexity of data, many researchers have developed deep learning (DL)-based imputation techniques. We conducted a systematic review to evaluate the use of these techniques, with a particular focus on the types of data, intending to assist healthcare researchers from various disciplines in dealing with missing data. MATERIALS AND METHODS We searched five databases (MEDLINE, Web of Science, Embase, CINAHL, and Scopus) for articles published prior to February 8, 2023 that described the use of DL-based models for imputation. We examined selected articles from four perspectives: data types, model backbones (i.e., main architectures), imputation strategies, and comparisons with non-DL-based methods. Based on data types, we created an evidence map to illustrate the adoption of DL models. RESULTS Out of 1822 articles, a total of 111 were included, of which tabular static data (29%, 32/111) and temporal data (40%, 44/111) were the most frequently investigated. Our findings revealed a discernible pattern in the choice of model backbones and data types, for example, the dominance of autoencoder and recurrent neural networks for tabular temporal data. The discrepancy in imputation strategy usage among data types was also observed. The "integrated" imputation strategy, which solves the imputation task simultaneously with downstream tasks, was most popular for tabular temporal data (52%, 23/44) and multi-modal data (56%, 5/9). Moreover, DL-based imputation methods yielded a higher level of imputation accuracy than non-DL methods in most studies. CONCLUSION The DL-based imputation models are a family of techniques, with diverse network structures. Their designation in healthcare is usually tailored to data types with different characteristics. Although DL-based imputation models may not be superior to conventional approaches across all datasets, it is highly possible for them to achieve satisfactory results for a particular data type or dataset. There are, however, still issues with regard to portability, interpretability, and fairness associated with current DL-based imputation models.
Collapse
Affiliation(s)
- Mingxuan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Siqi Li
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Han Yuan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Department of Emergency Medicine, Singapore General Hospital, Singapore
| | - Yilin Ning
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Feng Xie
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Yuqing Shang
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Bibhas Chakraborty
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Department of Statistics and Data Science, National University of Singapore, Singapore; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; SingHealth AI Office, Singapore Health Services, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Malinda RR. Biological data studies, scale-up the potential with machine learning. Eur J Hum Genet 2023; 31:619-620. [PMID: 37032352 PMCID: PMC10250392 DOI: 10.1038/s41431-023-01361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
|
15
|
Villa Nova M, Lin TP, Shanehsazzadeh S, Jain K, Ng SCY, Wacker R, Chichakly K, Wacker MG. Nanomedicine Ex Machina: Between Model-Informed Development and Artificial Intelligence. Front Digit Health 2022; 4:799341. [PMID: 35252958 PMCID: PMC8894322 DOI: 10.3389/fdgth.2022.799341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Today, a growing number of computational aids and simulations are shaping model-informed drug development. Artificial intelligence, a family of self-learning algorithms, is only the latest emerging trend applied by academic researchers and the pharmaceutical industry. Nanomedicine successfully conquered several niche markets and offers a wide variety of innovative drug delivery strategies. Still, only a small number of patients benefit from these advanced treatments, and the number of data sources is very limited. As a consequence, “big data” approaches are not always feasible and smart combinations of human and artificial intelligence define the research landscape. These methodologies will potentially transform the future of nanomedicine and define new challenges and limitations of machine learning in their development. In our review, we present an overview of modeling and artificial intelligence applications in the development and manufacture of nanomedicines. Also, we elucidate the role of each method as a facilitator of breakthroughs and highlight important limitations.
Collapse
Affiliation(s)
- Mônica Villa Nova
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Tzu Ping Lin
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Saeed Shanehsazzadeh
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Kinjal Jain
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Samuel Cheng Yong Ng
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | | | - Matthias G. Wacker
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- *Correspondence: Matthias G. Wacker
| |
Collapse
|