1
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Ramos-Riera KP, Pérez-Severiano F, López-Meraz ML. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab Brain Dis 2023; 38:767-782. [PMID: 36598703 DOI: 10.1007/s11011-022-01154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The brain requires a large amount of energy. Its function can be altered when energy demand exceeds supply or during metabolic disturbances such as diabetes mellitus. Diabetes, a chronic disease with a high incidence worldwide, is characterized by high glucose levels (hyperglycemia); however, hypoglycemic states may also occur due to insulin treatment or poor control of the disease. These alterations in glucose levels affect the brain and could cause epileptic seizures and status epilepticus. In addition, it is known that oxidative stress states emerge as diabetes progresses, contributing to the development of diseases secondary to diabetes, including retinopathy, nephropathy, cardiovascular alterations, and alterations in the central nervous system, such as epileptic seizures. Seizures are a complex of transient signs and symptoms resulting from abnormal, simultaneous, and excessive activity of a population of neurons, and they can be both a cause and a consequence of oxidative stress. This review aims to outline studies linking diabetes mellitus and seizures to oxidative stress, a condition that may be relevant to the development of severe seizures in diabetes mellitus patients.
Collapse
Affiliation(s)
- Karen Paola Ramos-Riera
- Doctorado de Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez," Insurgentes Sur 3877, 14269, La Fama, CDMX, México
| | - María Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México.
| |
Collapse
|
3
|
Xu XX, Shi RX, Fu Y, Wang JL, Tong X, Zhang SQ, Wang N, Li MX, Tong Y, Wang W, He M, Liu BY, Chen GL, Guo F. Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural Regen Res 2022; 18:1277-1285. [PMID: 36453412 PMCID: PMC9838157 DOI: 10.4103/1673-5374.357906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity, which triggers cell death in various neuropathological diseases, including epilepsy. Studies have shown that inhibition of neuronal nitric oxide synthase activity increases the epilepsy threshold, that is, has an anticonvulsant effect. However, the exact role and potential mechanism of neuronal nitric oxide synthase in seizures are still unclear. In this study, we performed RNA sequencing, functional enrichment analysis, and weighted gene coexpression network analysis of the hippocampus of tremor rats, a rat model of genetic epilepsy. We found damaged hippocampal mitochondria and abnormal succinate dehydrogenase level and Na+-K+-ATPase activity. In addition, we used a pilocarpine-induced N2a cell model to mimic epileptic injury. After application of neuronal nitric oxide synthase inhibitor 7-nitroindazole, changes in malondialdehyde, lactate dehydrogenase and superoxide dismutase, which are associated with oxidative stress, were reversed, and the increase in reactive oxygen species level was reversed by 7-nitroindazole or reactive oxygen species inhibitor N-acetylcysteine. Application of 7-nitroindazole or N-acetylcysteine downregulated the expression of caspase-3 and cytochrome c and reversed the apoptosis of epileptic cells. Furthermore, 7-nitroindazole or N-acetylcysteine downregulated the abnormally high expression of NLRP3, gasdermin-D, interleukin-1β and interleukin-18. This indicated that 7-nitroindazole and N-acetylcysteine each reversed epileptic cell death. Taken together, our findings suggest that the neuronal nitric oxide synthase/reactive oxygen species pathway is involved in pyroptosis of epileptic cells, and inhibiting neuronal nitric oxide synthase activity or its induced oxidative stress may play a neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Xue Shi
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Jia-Lu Wang
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Shi-Qi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mei-Xuan Li
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Bing-Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| |
Collapse
|
4
|
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy. Antioxidants (Basel) 2022; 11:antiox11010157. [PMID: 35052661 PMCID: PMC8772850 DOI: 10.3390/antiox11010157] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability—the hallmark of epilepsy—is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.
Collapse
|
5
|
Involvement of nitric oxide pathway in the acute anticonvulsant effect of salmon calcitonin in rats. Epilepsy Res 2022; 180:106864. [DOI: 10.1016/j.eplepsyres.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
6
|
Mohammed HS, Aboul Ezz HS, Zedan A, Ali MA. Electrophysiological and Neurochemical Assessment of Selenium Alone or Combined with Carbamazepine in an Animal Model of Epilepsy. Biol Trace Elem Res 2020; 195:579-590. [PMID: 31444771 DOI: 10.1007/s12011-019-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/18/2019] [Indexed: 11/08/2022]
Abstract
The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa Zedan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Brüning CA, Rosa SG, Quines CB, Magni DV, Nonemacher NT, Bortolatto CF, Nogueira CW. The role of nitric oxide in glutaric acid-induced convulsive behavior in pup rats. Eur J Neurosci 2020; 52:3738-3745. [PMID: 32459863 DOI: 10.1111/ejn.14840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Glutaric acidaemia type I (GA-I) is a cerebral organic disorder characterized by the accumulation of glutaric acid (GA) and seizures. As seizures are precipitated in children with GA-I and the mechanisms underlying this disorder are not well established, we decided to investigate the role of nitric oxide (NO) in GA-induced convulsive behaviour in pup rats. Pup male Wistar rats (18-day-old) were anesthetized and placed in stereotaxic apparatus for cannula insertion into the striatum for injection of GA. The experiments were performed 3 days after surgery (pup rats 21-day-old). An inhibitor of NO synthesis (N-G-nitro-l-arginine methyl ester-L-NAME, 40 mg/kg) or saline (vehicle) was administered intraperitoneally 30 min before the intrastriatal injection of GA (1 µl, 1.3 µmol/striatum) or saline. Immediately after the intrastriatal injections, the latency and duration of seizures were recorded for 20 min. The administration of L-NAME significantly increased the latency to the first seizure episode and reduced the duration of seizures induced by GA in pup rats. The administration of the NO precursor l-arginine (L-ARG; 80 mg/kg) prevented the effects of L-NAME. Besides, GA significantly increased nitrate and nitrite (NOx) levels in the striatum of pup rats and the preadministration of L-NAME prevented this alteration. L-ARG blocked the reduction of striatal NOx provoked by L-NAME. These results are experimental evidence that NO plays a role in the seizures induced by GA in pup rats, being valuable in understanding the physiopathology of neurological signs observed in children with this organic acidaemia and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Caroline Brandão Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Danieli Valnes Magni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Natália Tavares Nonemacher
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| |
Collapse
|
8
|
de Carvalho MAJ, Chaves-Filho A, de Souza AG, de Carvalho Lima CN, de Lima KA, Rios Vasconcelos ER, Feitosa ML, Souza Oliveira JV, de Souza DAA, Macedo DS, de Souza FCF, de França Fonteles MM. Proconvulsant effects of sildenafil citrate on pilocarpine-induced seizures: Involvement of cholinergic, nitrergic and pro-oxidant mechanisms. Brain Res Bull 2019; 149:60-74. [PMID: 31004733 DOI: 10.1016/j.brainresbull.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Sildenafil is a phosphodiesterase 5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Proconvulsant effect is a serious adverse event associated with sildenafil use. Here, we investigated the possible proconvulsant effects of sildenafil in pilocarpine (PILO)-induced seizures model, which mimics some aspects of temporal lobe epilepsy. We also evaluated sildenafil's effects on hippocampal markers related to PILO-induced seizure, for instance, acetylcholinesterase (AChE) activity, oxidative stress and nitric oxide (NO) markers, namely nitrite, inducible NO synthase (iNOS) and neuronal NOS (nNOS). The influences of muscarinic receptors blockade on sildenafil proconvulsant effects and brain nitrite levels were also evaluated. Male mice were submitted to single or repeated (7 days) sildenafil administration (2.5, 5, 10 and 20 mg/kg). Thirty minutes later, PILO was injected and mice were further evaluated for 1 h for seizure activity. Sildenafil induced a dose- and time-progressive proconvulsant effect in PILO-induced seizures. Sildenafil also potentiated the inhibitory effect of PILO in AChE activity and induced a further increase in nitrite levels and pro-oxidative markers, mainly in the hippocampus. Repeated sildenafil treatment also increased the hippocampal expression of iNOS and nNOS isoforms, while the blockade of muscarinic receptors attenuated both sildenafil-induced proconvulsant effect and brain nitrite changes. Our data firstly demonstrated the proconvulsant effect of sildenafil in PILO-model of seizures. This effect seems to be related to an increased cholinergic-nitrergic tone and pro-oxidative brain changes. Also, our findings advert to caution in using sildenafil for patients suffering from neurological conditions that reduces seizure threshold, such as epilepsy.
Collapse
Affiliation(s)
- Michele Albuquerque Jales de Carvalho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Adriano Chaves-Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Alana Gomes de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane de Carvalho Lima
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Klistenes Alves de Lima
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Emiliano Ricardo Rios Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mariana Lima Feitosa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Victor Souza Oliveira
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Denia Alves Albuquerque de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Francisca Cléa Florenço de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Marta Maria de França Fonteles
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Pharmacy Department, Faculty of Dentistry, Nursing and Pharmacy, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Lotfy DM, Safar MM, Mohamed SH, Kenawy SA. Effect of valproic acid alone or combined with low dose gamma irradiation in modulating PTZ-induced convulsions in rats involving AKT/m-TOR pathway. Life Sci 2018; 212:261-266. [DOI: 10.1016/j.lfs.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
10
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
11
|
Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J Appl Toxicol 2018. [DOI: 10.1002/jat.3605] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nela Vanova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Alzbeta Dlabkova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| |
Collapse
|
12
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Front Cell Neurosci 2017; 11:377. [PMID: 29234274 PMCID: PMC5712337 DOI: 10.3389/fncel.2017.00377] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological disorders which provoke progressive neuronal degeneration. Endoplasmic reticulum (ER) stress has recently been recognized as pivotal etiological factors contributing to epilepsy-induced neuronal damage. However, the specific contribution of epilepsy made to ER stress remains largely elusive. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling epilepsy-induced ER stress and oxidative damage. By genetic deletion of nNOS gene, we further demonstrated that nNOS acts through peroxynitrite, an important member of reactive nitrogen species, to trigger hippocampal ER stress and oxidative damage in the PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced ER stress and oxidative damage, and identify a potential therapeutic target for neuroprotection in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center, Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School, Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Vadivukkarasi S, Arunambiga S, Anila A, Ganapathy S. Protective Effect of Alkaloids from Amaranthus Viridis Linn. Against Hydrogen Peroxide Induced Oxidative Damage in Human Erythrocytes (RBC). ACTA ACUST UNITED AC 2015. [DOI: 10.17352/ijcem.000011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Okuyan M, Akca M, Yildirim M. Electrophysiological evidence for the anticonvulsant effect of alpha-lipoic acid via indirect antioxidant properties in BALB/c mice. Neurol Res 2013; 35:726-33. [DOI: 10.1179/1743132813y.0000000188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Mukadder Okuyan
- Department of PhysiologyFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Metehan Akca
- Department of PhysiologyFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Yildirim
- Department of PhysiologyFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
15
|
Kandemir H, Abuhandan M, Aksoy N, Savik E, Kaya C. Oxidative imbalance in child and adolescent patients with obsessive compulsive disorder. J Psychiatr Res 2013; 47:1831-4. [PMID: 24011862 DOI: 10.1016/j.jpsychires.2013.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 01/23/2023]
Abstract
Various psychological, social, genetic and biochemical factors are thought to be involved in etiology of obsessive-compulsive disorder (OCD). To the best of our knowledge there are no studies investigating the effects of free radicals in children and adolescents with OCD. This study evaluated total oxidant and antioxidant status, oxidative stress index, and arylesterase and paraoxonase activity in children and adolescents with OCD. The study included 28 patients diagnosed with OCD and 36 healthy children as an age- and sex-matched control group. Their serum total oxidant status (TOS) and total antioxidant status (TAS) were measured and the oxidative stress index (OSI) was calculated. Although serum TOS and OSI values in the OCD patients were significantly higher than those in the control group (p = 0.008, p < 0.001, respectively), TAS and paraxonase activity were significantly lower ( p < 0.001 for both). However, no statistically significant difference in arylesterase activity was found (p > 0.05). The increase in oxidative status and decrease in antioxidants in patients with OCD demonstrate that oxidative stress may have an important role in the pathophysiology of the disease. It has been suggested that drugs that contain antioxidants should be added to conventional pharmacotherapy during follow-up.
Collapse
Affiliation(s)
- Hasan Kandemir
- Harran University School of Medicine, Child and Adolescent Psychiatry, Sanliurfa, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Oxidative stress markers in the neocortex of drug-resistant epilepsy patients submitted to epilepsy surgery. Epilepsy Res 2013; 107:75-81. [PMID: 24054426 DOI: 10.1016/j.eplepsyres.2013.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/19/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE While there is solid experimental evidence of brain oxidative stress in animal models of epilepsy, it has not been thoroughly verified in epileptic human brain. Our purpose was to determine and to compare oxidative stress markers in the neocortex of epileptic and non-epileptic humans, with the final objective of confirming oxidative stress phenomena in human epileptic brain. METHODS Neocortical samples from drug-resistant epilepsy patients submitted to epilepsy surgery (n=20) and from control, non-epileptic cortex samples (n=11) obtained from brain bank donors without neurological disease, were studied for oxidative stress markers: levels of reactive oxygen species (ROS), such as superoxide anion (O2(-)); activity of antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR); and markers of damage to biomolecules (lipid peroxidation and DNA oxidation). RESULTS Compared with non-epileptic controls, the neocortex of epileptic patients displayed increased levels of superoxide anion (P≤0.001), catalase (P≤0.01), and DNA oxidation (P≤0.001); a decrease in GPx (P≤0.05), and no differences in SOD, GR and lipid peroxidation. CONCLUSIONS Our findings in humans are in agreement with those found in animal models, supporting oxidative stress as a relevant mechanism also in human epilepsy. The concurrent increase in catalase and decrease in GPx, together with unchanged SOD levels, suggests catalase as the main antioxidant enzyme in human epileptic neocortex. The substantial increase in the levels of O2(-) and 8-oxo-dG in epileptic patients supports a connection between chronic seizures and ROS-mediated neural damage.
Collapse
|
17
|
Involvement of glutamate, oxidative stress and inducible nitric oxide synthase in the convulsant activity of ciprofloxacin in mice. Eur J Pharmacol 2012; 685:30-7. [DOI: 10.1016/j.ejphar.2012.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
|
18
|
The neuroprotective effect of curcumin and Nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: a comparison with valproate. Neurochem Res 2011; 36:2195-204. [PMID: 21751034 DOI: 10.1007/s11064-011-0544-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2011] [Indexed: 12/18/2022]
Abstract
Oxidative stress has been implicated to play a role in epileptogenesis and pilocarpine-induced seizures. The present study aims to evaluate the antioxidant effects of curcumin, Nigella sativa oil (NSO) and valproate on the levels of malondialdehyde, nitric oxide, reduced glutathione and the activities of catalase, Na⁺, K⁺-ATPase and acetylcholinesterase in the hippocampus of pilocarpine-treated rats. The animal model of epilepsy was induced by pilocarpine and left for 22 days to establish the chronic phase of epilepsy. These animals were then treated with curcumin, NSO or valproate for 21 days. The data revealed evidence of oxidative stress in the hippocampus of pilocarpinized rats as indicated by the increased nitric oxide levels and the decreased glutathione levels and catalase activity. Moreover, a decrease in Na⁺, K⁺-ATPase activity and an increase in acetylcholinesterase activity occurred in the hippocampus after pilocarpine. Treatment with curcumin, NSO or valproate ameliorated most of the changes induced by pilocarpine and restored Na⁺, K⁺-ATPase activity in the hippocampus to control levels. This study reflects the promising anticonvulsant and potent antioxidant effects of curcumin and NSO in reducing oxidative stress, excitability and the induction of seizures in epileptic animals and improving some of the adverse effects of antiepileptic drugs.
Collapse
|
19
|
Méndez-Cuesta LA, Márquez-Valadez B, Pérez-De La Cruz V, Escobar-Briones C, Galván-Arzate S, Alvarez-Ruiz Y, Maldonado PD, Santana RA, Santamaría A, Carrillo-Mora P. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress. Basic Clin Pharmacol Toxicol 2011; 109:350-6. [PMID: 21645264 DOI: 10.1111/j.1742-7843.2011.00738.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.
Collapse
Affiliation(s)
- Luis A Méndez-Cuesta
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, México City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Diazoxide preconditioning against seizure-induced oxidative injury is via the PI3K/Akt pathway in epileptic rat. Neurosci Lett 2011; 495:130-4. [DOI: 10.1016/j.neulet.2011.03.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/08/2011] [Accepted: 03/18/2011] [Indexed: 11/20/2022]
|
21
|
Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats. Brain Res 2010; 1334:58-64. [DOI: 10.1016/j.brainres.2010.03.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 01/08/2023]
|
22
|
Liu J, Wang A, Li L, Huang Y, Xue P, Hao A. Oxidative stress mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Seizure 2010; 19:165-72. [PMID: 20149694 DOI: 10.1016/j.seizure.2010.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022] Open
Abstract
Oxidative stress, which is defined as the over-production of free radicals, can dramatically alter neuronal function and has been linked to status epilepticus (SE). The pathological process and underlying mechanisms involved in the oxidative stress during SE are still not fully clear. In the current study, SE was induced in rats by lithium-pilocarpine administration. Our data show that hippocampal neuron death occurs at 6h and is sustained for 7 days after SE. The production of nitric oxide (NO) started to increase at 30 min and was evident at 6h and 7 days after SE, which coincided with increased expression of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and malondialdehyde (MDA) after SE, whereas, activated caspase-3 prominently appeared at 7 days after SE. Further, FK506, an immunosuppressant, partially rescued the neuron death and attenuated the expression of NO, nNOS, iNOS, MDA and activated caspase-3. Taken together, our study indicates that oxidative stress mediated hippocampal neuron death occurs prior to caspase-3 activation and that FK506 plays an important role in protecting hippocampal neurons during status epilepticus.
Collapse
Affiliation(s)
- Jinzhi Liu
- Department of Neurology, Qianfoshan Hospital, Medical School of Shandong University, No. 66, Jingshi Road, Jinan, Shandong 250014, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Tsai HL, Chang CN, Chang SJ. The effects of pilocarpine-induced status epilepticus on oxidative stress/damage in developing animals. Brain Dev 2010; 32:25-31. [PMID: 19342187 DOI: 10.1016/j.braindev.2009.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/30/2022]
Abstract
Pilocarpine (PC), a muscarinic receptor agonist, is used for the induction of experimental models of status epilepticus (SE) for studying the type of seizure-induced brain injury and other neuropathophysiological mechanisms of related disorder. PC was administered to day-old Taiwan Native Breeder chicks and induced severe prolonged seizures (PC+PS) and repeated seizures (PC+RS) during 4h behavioral observations. Results showed that PC+PS group had excessive levels of reactive oxygen species (ROS) and malondialdehyde (MDA) production and lower activities of superoxide dismutase (SOD) and catalase (CAT) compared to the PC+RS group (p<0.05). Neuronal death and single strand DNA were significantly increased in dissociated brain cells of PC+PS group compared to that in the PC+RS group (p<0.01). Furthermore, a decrease in mitochondrial membrane potential (MMP) was observed in PC+PS group as compared with that in PC+RS group indicating neuronal mitochondrial dysfunction in PS group not in RS group. ROS, mitochondrial dysfunction and DNA damage played important roles in pathophysiology of the immature brain to prolonged-seizure-induced damage. A manifest result of depleted enzymatic antioxidants (SOD and CAT) was also contributed for the vulnerability of the neonatal brain to prolonged-seizure-induced oxidative damage. The replenishment of SOD and CAT activities might be useful in protecting brain against prolonged-seizure-induced neuronal death.
Collapse
Affiliation(s)
- Hsiu-Ling Tsai
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Jente, Tainan 717, Taiwan
| | | | | |
Collapse
|
24
|
Devi PU, Manocha A, Vohora D. Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 2008; 9:3169-77. [DOI: 10.1517/14656560802568230] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Cosgrave AS, McKay JS, Bubb V, Morris R, Quinn JP, Thippeswamy T. Regulation of activity-dependent neuroprotective protein (ADNP) by the NO-cGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiol Dis 2008; 30:281-292. [PMID: 18375135 DOI: 10.1016/j.nbd.2008.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/30/2008] [Accepted: 02/01/2008] [Indexed: 12/11/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is widely distributed in the cytoplasm of neurons and astrocytes of the hippocampus. Kainic acid (KA)-induced seizures increases neuronal nitric oxide synthase (nNOS) in neurons and inducible NOS (iNOS) in glia cells which coincides with a reduction in ADNP in the hippocampus. Inhibitors of NOS or soluble guanylyl cyclase (sGC) activity reduce ADNP under basal conditions in the absence of seizures. Treating animals with these inhibitors prior to KA-induced seizure, in particular, L-NAME (N(G)-nitro-l-arginine methyl ester), advances the onset of the first seizure but reverses the loss of ADNP by 3 days after the first seizure. This suggests that the NO-cGMP pathway has a role in regulating ADNP under both basal physiological conditions and in the pathophysiological changes produced during epileptogenesis.
Collapse
Affiliation(s)
- Anna S Cosgrave
- Department of Veterinary Preclinical Science, Veterinary Faculty, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZJ, UK
| | - Jennifer S McKay
- AstraZeneca, Department of Pathology Safety Assessment, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Vivien Bubb
- School of Biomedical Sciences, Medical School, University of Liverpool, Liverpool L69 3BX, UK
| | - Richard Morris
- Department of Veterinary Preclinical Science, Veterinary Faculty, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZJ, UK
| | - John P Quinn
- School of Biomedical Sciences, Medical School, University of Liverpool, Liverpool L69 3BX, UK
| | - Thimmasettappa Thippeswamy
- Department of Veterinary Preclinical Science, Veterinary Faculty, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZJ, UK.
| |
Collapse
|
26
|
Fukuda M, Yamauchi H, Yamamoto H, Aminaka M, Murakami H, Kamiyama N, Miyamoto Y, Koitabashi Y. The evaluation of oxidative DNA damage in children with brain damage using 8-hydroxydeoxyguanosine levels. Brain Dev 2008; 30:131-6. [PMID: 17766071 DOI: 10.1016/j.braindev.2007.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 05/21/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
Urinary and cerebrospinal fluid (CSF) levels of 8-hydroxydeoxyguanosine (8-OHdG) were examined to estimate the relevance of oxidative stress in children with brain damage. Urinary 8-OHdG levels were measured in 51 children with various forms of central nervous system (CNS) disorders (status epilepticus [SE], hypoxic-ischemic encephalopathy [HIE], CNS infections and chronic epilepsy) and these levels were compared with those in 51 healthy children. CSF 8-OHdG levels were measured in 25 children with brain damage and in 19 control subjects. In addition, urinary and CSF levels of 8-OHdG were compared between the children with brain damage and healthy children. Finally, the relationship between urinary and CSF levels of 8-OHdG was determined in 12 children that provided both urinary and CSF samples. Our results showed that urinary 8-OHdG levels in children with HIE and CNS infections were higher than those of controls (Steel test; p < 0.05 and p < 0.05, respectively) and that CSF 8-OHdG levels were higher in children with SE, HIE, and CNS infections than in control subjects (Steel test; p < 0.01, 0.05 and 0.05, respectively). In addition, a positive correlation between the levels of urinary and CSF 8-OHdG was noted in the 12 children that provided both CSF and urinary samples (Spearman's rank correlation; rho = 0.82, p < 0.01). Further, we observed changes in the urinary 8-OHdG in a patient with HHV-6 encephalopathy, and found that the changes correlated well with the patient's clinical condition. These results suggest that oxidative stress is strongly related to acute brain damage in children, and that 8-OHdG is a useful marker of brain damage. Therefore, repeated measurements of urinary 8-OHdG may be helpful in estimating the extent of brain damage.
Collapse
Affiliation(s)
- Miho Fukuda
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ueda Y, Yokoyama H, Nakajima A, Takaki M, Nagatomo K, Doi T, Willmore LJ. In vivo EPR estimation of bilateral hippocampal antioxidant ability of rats with epileptogenesis induced by amygdalar FeCl3 microinjection. Epilepsia 2007; 48:1947-51. [PMID: 17559571 DOI: 10.1111/j.1528-1167.2007.01141.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To measure the neural antioxidant function in the hippocampus of rats with epileptogenesis induced by microinjection of FeCl3 into the amygdala using the decay rate of the nitroxide radical as estimated by L-band electron paramagnetic resonance (EPR) spectroscopy. MATERIALS AND METHODS Region-selected intensity determination (RSID) was used for the estimation of the nitroxide decay ratio. It is possible to estimate the in vivo hippocampal antioxidant ability using the half-life of the EPR signal of the blood-brain barrier-permeable nitroxide radical. Rats were microinjected with aqueous FeCl3 into the right amygdaloid body. Recording from chronically implanted depth electrodes showed the development of spike discharges with recurrent seizures arising from amygdalar regions with propagation into both hippocampi. Rats with unilateral aqueous FeCl3 lesions were injected systemically with the nitroxide radical and then had EPR for RSID estimation at 5, 15, and 30 days after the iron salt injection. RESULTS The in vivo antioxidant ability of the dorsal hippocampus was significantly decreased bilaterally in animals with FeCl3-induced seizures when compared to the control. CONCLUSION Neural antioxidant function in the hippocampi of rats with chronic seizures induced by amygdalar FeCl3 was decreased early and both ipsilaterally and bilaterally.
Collapse
Affiliation(s)
- Yuto Ueda
- Section of Psychiatry, Department of Clinical Neuroscience, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu ZW, Zhang T, Yang Z. Involvement of Nitric Oxide in Spatial Memory Deficits in Status Epilepticus Rats. Neurochem Res 2007; 32:1875-83. [PMID: 17549628 DOI: 10.1007/s11064-007-9374-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
Status epilepticus (SE) is associated with a significant risk of cognitive impairment, and the increase of nitric oxide (NO) releasing has been reported during SE. We investigated the effects of neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), on spatial performance of rats in the Morris water maze. Treatment with 7-NI, but not with AG, improved the performance of rats after SE not only in acquisition of the task but also in probe test. Furthermore, the level of SE-induced malondialdehyde (MDA), end product of lipid peroxidation, was significantly decreased only in animals receiving 7-NI injection. Taken together, the results of the present study provided evidence that the NO pathway contributed to oxidative stress after SE, and nNOS/NO pathway may underlie one of the potential mechanisms contributing to SE-induced spatial memory deficits.
Collapse
Affiliation(s)
- Zhao Wei Liu
- Key Lab of Bioactive Materials, Ministry of Education and College of Life Science, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
29
|
Liu FY, Wang XF, Li MW, Li JM, Xi ZQ, Luan GM, Zhang JG, Wang YP, Sun JJ, Li YL. Upregulated expression of postsynaptic density-93 and N-methyl-D-aspartate receptors subunits 2B mRNA in temporal lobe tissue of epilepsy. Biochem Biophys Res Commun 2007; 358:825-30. [PMID: 17506987 DOI: 10.1016/j.bbrc.2007.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/01/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the expression of PSD-93 mRNA and NR2B mRNA in the brain tissue from the patients with epilepsy so as to explore the possible mechanisms of the pathogenesis of the epilepsy. METHODS Fifty-six patients with epilepsy were divided into intractable epilepsy (IE) and non-intractable epilepsy (NIE) groups. cDNA microarrays prepared from the brain tissues obtained from these two groups were scanned and comparison to those from the non-epileptogenic control (C) was made. Expression level of PSD-93mRNA and NR2BmRNA were examined by reverse transcription polymerase chain reaction (GAPDH gene, internal control). Expression ratio (target gene/GAPDH) was used to evaluate each gene relative expression level. RESULTS The cDNA microarray analysis showed that the expression of PSD-93 mRNA related to the function of NMDAR-NO signal transduction pathway was significantly higher in epilepsy patients than those in the controlled group. The results of RT-PCR were consistent with those of the cDNA microarrays. The relative expression ratio of PSD-93 in patients with non-epileptogenic control, NIE, and IE was 0.159, 0.368, and 0.341, respectively. Correspondingly, that of NR2B was 0.198, 0.738, and 0.903, respectively. The expressions of PSD-93 and NR2B in the NIE and IE were significantly higher than those of control, respectively (P<0.05). However, there was no significantly difference the expression of PSD-93 between NIE and IE. (P>0.05), neither do that of NR2B (P>0.05). CONCLUSIONS The upregulated expressions of PSD-93 mRNA and NR2BmRNA may be involved in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Feng-Ying Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, No. 1You-yi Road, Yu-zhong District, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akarsu S, Yilmaz S, Ozan S, Kurt A, Benzer F, Gurgoze MK. Effects of febrile and afebrile seizures on oxidant state in children. Pediatr Neurol 2007; 36:307-11. [PMID: 17509462 DOI: 10.1016/j.pediatrneurol.2007.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/28/2006] [Accepted: 01/15/2007] [Indexed: 11/26/2022]
Abstract
No comparative studies have addressed the oxidant and antioxidant states of blood and cerebrospinal fluid. To reveal this differential state, the study was designed to identify the seizure type with the worse prognosis by determining erythrocyte arginase and erythrocyte catalase, plasma and cerebrospinal fluid malondialdehyde, and plasma and cerebrospinal fluid nitric oxide levels. Study groups were classified as febrile (group 1, n = 21), afebrile (group 2, n = 21), and control (group 3, n = 41, subdivided as 3a, febris positive, convulsion negative, and 3b, febris negative, convulsion negative). Levels of erythrocyte arginase, erythrocyte catalase, plasma malondialdehyde, cerebrospinal fluid malondialdehyde, plasma nitric oxide, and cerebrospinal fluid nitric oxide levels were determined for all groups. A difference was detected between the control and febrile seizure groups with respect to erythrocyte catalase and plasma and cerebrospinal fluid levels of nitric oxide (P < 0.05). Both febrile states and convulsions influence oxidative mechanism. Oxidative stress-generating potential differs for febrile and afebrile seizures. In afebrile seizures, greater levels of oxidative stress might affect prognosis adversely. This phenomenon can be interpreted in terms of fever as a protective factor against possible neurological damage during convulsive seizures.
Collapse
Affiliation(s)
- Saadet Akarsu
- Department of Pediatrics, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | | | | | | | | |
Collapse
|
31
|
Chuang YC, Chen SD, Lin TK, Liou CW, Chang WN, Chan SHH, Chang AYW. Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology 2007; 52:1263-73. [PMID: 17336342 DOI: 10.1016/j.neuropharm.2007.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/10/2007] [Accepted: 01/15/2007] [Indexed: 11/24/2022]
Abstract
Status epilepticus results in preferential neuronal cell loss in the hippocampus. We evaluated the hypothesis that the repertoire of intracellular events in the vulnerable hippocampal CA3 subfield after induction of experimental temporal lobe status epilepticus entails upregulation of nitric oxide synthase II (NOS II), followed by the release of mitochondrial cytochrome c that triggers the cytosolic caspase-3 cascade, leading to apoptotic cell death. In Sprague-Dawley rats, significant and temporally correlated upregulation of NOS II (3-24h), but not NOS I or II expression, enhanced cytosolic translocation of cytochrome c (days 1 and 3), augmented activated caspase-3 in cytosol (days 1, 3 and 7) and DNA fragmentation (days 1, 3 and 7) was detected bilaterally in the hippocampal CA3 subfield after elicitation of sustained seizure activity by microinjection of kainic acid into the unilateral CA3 subfield. Application bilaterally into the hippocampal CA3 subfield of a selective NOS II inhibitor, S-methylisothiourea, significantly blunted these apoptotic events; a selective NOS I inhibitor, N(omega)-propyl-l-arginine or a potent NOS III inhibitor, N(5)-(1-iminoethyl)-l-ornithine was ineffective. We conclude that upregulation of NOS II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following the induction of experimental temporal lobe status epilepticus.
Collapse
Affiliation(s)
- Y C Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
32
|
Royes LFF, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Petry JC, Coelho RC, Mello CF. The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate: An electroencephalographic and neurochemical study. Epilepsy Res 2007; 73:228-37. [PMID: 17137751 DOI: 10.1016/j.eplepsyres.2006.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 10/23/2006] [Accepted: 10/29/2006] [Indexed: 10/23/2022]
Abstract
Methylmalonic acidemias consist of a group of inherited metabolic disorders caused by deficiency of methylmalonyl-CoA mutase activity and biochemically characterized by methylmalonate (MMA) accumulation, impairment mitochondrial oxidative metabolism and reactive species production. Preliminary studies with nitric oxide synthase (NOS) inhibitors have suggested that nitric oxide (NO) plays a role in the convulsant effect of MMA. However, definitive biochemical and electrophysiological evidence of the involvement of NO in the convulsions induced by MMA are lacking. In this study, we investigated whether the inhibition of NOS by 7-nitroindazole (7-NI, 3-60mg/kg, i.p.) altered the convulsions, protein oxidative damage, NO(x) (NO(2) plus NO(3)) production and Na(+),K(+)-ATPase activity inhibition induced by MMA. 7-NI decreased striatal NO(x) content, but increased seizures and protein carbonylation induced by MMA (6mumol/striatum). The intrastriatal injection of l-arginine (50nmol/0.5mul), but not of d-arginine (50nmol/0.5mul), increased striatal NO(x) content and protected against MMA-induced electroencephalographic seizures, striatal protein carbonylation and Na(+),K(+)-ATPase inhibition. Furthermore, l-arginine (50nmol/0.5mul) and MMA had no additive effect on NO(x) increase. These results are experimental evidence that endogenous NO plays a protective role in the convulsions and acute neurochemical alterations induced by this organic acid.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Oliveira AA, Almeida JPC, Freitas RM, Nascimento VS, Aguiar LMV, Júnior HVN, Fonseca FN, Viana GSB, Sousa FCF, Fonteles MMF. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 2007; 27:395-406. [PMID: 17205390 DOI: 10.1007/s10571-006-9132-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
: Oxidative stress has been implicated in a large number of human degenerative diseases, including epilepsy. Levetiracetam (LEV) is a new antiepileptic agent with broad-spectrum effects on seizures and animal models of epilepsy. Recently, it was demonstrated that the mechanism of LEV differs from that of conventional antiepileptic drugs. Objectifying to investigate if LEV mechanism of action involves antioxidant properties, lipid peroxidation levels, nitrite-nitrate formation, catalase activity, and glutathione (GSH) content were measured in adult mice brain. The neurochemical analyses were carried out in hippocampus of animals pretreated with LEV (200 mg/kg, i.p.) 60 min before pilocarpine-induced seizures (400 mg/kg, s.c.). The administration of alone pilocarpine, 400 mg/kg, s.c. (P400) produced a significant increase of lipid peroxidation level in hippocampus. LEV pretreatment was able to counteract this increase, preserving the lipid peroxidation level in normal value. P400 administration also produced increase in the nitrite-nitrate formation and catalase activity in hippocampus, beyond a decrease in GSH levels. LEV administration before P400 prevented the P400-induced alteration in nitrite-nitrate levels and preserved normal values of catalase activity in hippocampus. Moreover, LEV administration prevented the P400-induced loss of GSH in this cerebral area. The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.
Collapse
Affiliation(s)
- A A Oliveira
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, Fortaleza 60431-970, CE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lazzarini R, Maiorka PC, Liu J, Papadopoulos V, Palermo-Neto J. Diazepam effects on carrageenan-induced inflammatory paw edema in rats: Role of nitric oxide. Life Sci 2006; 78:3027-34. [PMID: 16438989 DOI: 10.1016/j.lfs.2005.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/21/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.
Collapse
Affiliation(s)
- Ricardo Lazzarini
- Laboratory of Applied Pharmacology and Toxicology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION Epileptic seizures complicating treatment with selective inhibitors of phosphodiesterase type 5 are scarcely reported. CASE REPORT A previously non-epileptic 78-year-old patient presented with a partial epileptic seizure following oral intake, for the second time, of 10mg of vardenafil (Levitra). The brain MRI failed to show any preexisting lesion. To our knowledge, only 2 cases of generalized tonic-clonic seizures induced by sildenafil (Viagra) use have been reported. In our patient, the seizure could be due to the epileptogenic potential of the drug or to its vascular complications. CONCLUSION Further studies are needed to elucidate the association of phosphodiesterase inhibitors use and epileptic seizures.
Collapse
Affiliation(s)
- S Koussa
- Service de Neurologie, Hôpital Hôtel-Dieu de France, Université Saint Joseph, Beyrouth, Liban.
| | | | | | | |
Collapse
|