1
|
Spark DL, Ma S, Nowell CJ, Langmead CJ, Stewart GD, Nithianantharajah J. Sex-Dependent Attentional Impairments in a Subchronic Ketamine Mouse Model for Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:229-239. [PMID: 38298794 PMCID: PMC10829638 DOI: 10.1016/j.bpsgos.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 02/02/2024] Open
Abstract
Background The development of more effective treatments for schizophrenia targeting cognitive and negative symptoms has been limited, partly due to a disconnect between rodent models and human illness. Ketamine administration is widely used to model symptoms of schizophrenia in both humans and rodents. In mice, subchronic ketamine treatment reproduces key dopamine and glutamate dysfunction; however, it is unclear how this translates into behavioral changes reflecting positive, negative, and cognitive symptoms. Methods In male and female mice treated with either subchronic ketamine or saline, we assessed spontaneous and amphetamine-induced locomotor activity to measure behaviors relevant to positive symptoms, and used a touchscreen-based progressive ratio task of motivation and the rodent continuous performance test of attention to capture specific negative and cognitive symptoms, respectively. To explore neuronal changes underlying the behavioral effects of subchronic ketamine treatment, we quantified expression of the immediate early gene product, c-Fos, in key corticostriatal regions using immunofluorescence. Results We showed that spontaneous locomotor activity was unchanged in male and female subchronic ketamine-treated animals, and amphetamine-induced locomotor response was reduced. Subchronic ketamine treatment did not alter motivation in either male or female mice. In contrast, we identified a sex-specific effect of subchronic ketamine on attentional processing wherein female mice performed worse than control mice due to increased nonselective responding. Finally, we showed that subchronic ketamine treatment increased c-Fos expression in prefrontal cortical and striatal regions, consistent with a mechanism of widespread disinhibition of neuronal activity. Conclusions Our results highlight that the subchronic ketamine mouse model reproduces a subset of behavioral symptoms that are relevant for schizophrenia.
Collapse
Affiliation(s)
- Daisy L. Spark
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sherie Ma
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J. Nowell
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Spark DL, Vermeulen MH, de la Fuente Gonzalez RA, Hatzipantelis CJ, Rueda P, Sepehrizadeh T, De Veer M, Mannoury la Cour C, Fornito A, Langiu M, Stewart GD, Nithianantharajah J, Langmead CJ. Gpr88 Deletion Impacts Motivational Control Without Overt Disruptions to Striatal Dopamine. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1053-1061. [PMID: 37881541 PMCID: PMC10593871 DOI: 10.1016/j.bpsgos.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Disrupted motivational control is a common-but poorly treated-feature of psychiatric disorders, arising via aberrant mesolimbic dopaminergic signaling. GPR88 is an orphan G protein-coupled receptor that is highly expressed in the striatum and therefore well placed to modulate disrupted signaling. While the phenotype of Gpr88 knockout mice suggests a role in motivational pathways, it is unclear whether GPR88 is involved in reward valuation and/or effort-based decision making in a sex-dependent manner and whether this involves altered dopamine function. Methods In male and female Gpr88 knockout mice, we used touchscreen-based progressive ratio, with and without reward devaluation, and effort-related choice tasks to assess motivation and cost/benefit decision making, respectively. To explore whether these motivational behaviors were related to alterations in the striatal dopamine system, we quantified expression of dopamine-related genes and/or proteins and used [18F]DOPA positron emission tomography and GTPγ[35S] binding to assess presynaptic and postsynaptic dopamine function, respectively. Results We showed that male and female Gpr88 knockout mice displayed greater motivational drive than wild-type mice, which was maintained following reward devaluation. Furthermore, we showed that cost/benefit decision making was impaired in male, but not female, Gpr88 knockout mice. Surprisingly, we found that Gpr88 deletion had no effect on striatal dopamine by any of the measures assessed. Conclusions Our results highlight that GPR88 regulates motivational control but that disruption of such behaviors following Gpr88 deletion occurs independently of gross perturbations to striatal dopamine at a gene, protein, or functional level. This work provides further insights into GPR88 as a drug target for motivational disorders.
Collapse
Affiliation(s)
- Daisy L. Spark
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michela H. Vermeulen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rocío A. de la Fuente Gonzalez
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Michael De Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Monica Langiu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Holahan MR, Smith CA, Luu BE, Storey KB. Preadolescent Phthalate (DEHP) Exposure Is Associated With Elevated Locomotor Activity and Reward-Related Behavior and a Reduced Number of Tyrosine Hydroxylase Positive Neurons in Post-Adolescent Male and Female Rats. Toxicol Sci 2018; 165:512-530. [DOI: 10.1093/toxsci/kfy171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | - Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Effects of muscimol, amphetamine, and DAMGO injected into the nucleus accumbens shell on food-reinforced lever pressing by undeprived rats. Pharmacol Biochem Behav 2012; 101:499-503. [PMID: 22366216 DOI: 10.1016/j.pbb.2012.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/02/2012] [Accepted: 02/11/2012] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that large increases in food intake in nondeprived animals can be induced by injections of both the GABA(A) agonist muscimol and the μ-opioid agonist DAMGO into the nucleus accumbens shell (AcbSh), while injections of the catecholamine agonist amphetamine have little effect. In the current study we examined whether injections of these drugs are able to increase food-reinforced lever pressing in nondeprived rats. Twelve subjects were trained to lever press on a continuous reinforcement schedule while food deprived and were then tested after being placed back on ad libitum feeding. Under these conditions, responding was markedly increased by injections of either muscimol or DAMGO, although the onset of the effects of the latter drug was delayed by 30-40 min. In contrast, amphetamine injections failed to increase reinforced lever pressing, although they did enhance responding on a non-reinforced lever, presumably reflecting alterations in behavioral activation. These results demonstrate that stimulation of GABA(A) and μ-opioid receptors within the AcbSh is able to promote not only food intake, but also food-directed operant behavior. In contrast, stimulation of AcbSh dopamine receptors may enhance behavioral arousal, but does not appear to specifically potentiate behaviors directed toward food procurement.
Collapse
|