1
|
Alaghband Y, Klein PM, Kramár EA, Cranston MN, Perry BC, Shelerud LM, Kane AE, Doan NL, Ru N, Acharya MM, Wood MA, Sinclair DA, Dickstein DL, Soltesz I, Limoli CL, Baulch JE. Galactic cosmic radiation exposure causes multifaceted neurocognitive impairments. Cell Mol Life Sci 2023; 80:29. [PMID: 36607431 PMCID: PMC9823026 DOI: 10.1007/s00018-022-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, 92697-2695, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-2695, USA
| | - Michael N Cranston
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Bayley C Perry
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Lukas M Shelerud
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
2
|
Wu MY, Zou WJ, Yu P, Yang Y, Li SJ, Liu Q, Xie J, Chen SQ, Lin WJ, Tang Y. Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function. Neural Regen Res 2022; 17:2253-2259. [PMID: 35259846 PMCID: PMC9083168 DOI: 10.4103/1673-5374.336875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shao-Jian Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si-Qi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine; Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Montay-Gruel P, Acharya MM, Gonçalves Jorge P, Petit B, Petridis IG, Fuchs P, Leavitt R, Petersson K, Gondré M, Ollivier J, Moeckli R, Bochud F, Bailat C, Bourhis J, Germond JF, Limoli CL, Vozenin MC. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin Cancer Res 2021; 27:775-784. [PMID: 33060122 PMCID: PMC7854480 DOI: 10.1158/1078-0432.ccr-20-0894] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent data have shown that single-fraction irradiation delivered to the whole brain in less than tenths of a second using FLASH radiotherapy (FLASH-RT), does not elicit neurocognitive deficits in mice. This observation has important clinical implications for the management of invasive and treatment-resistant brain tumors that involves relatively large irradiation volumes with high cytotoxic doses. EXPERIMENTAL DESIGN Therefore, we aimed at simultaneously investigating the antitumor efficacy and neuroprotective benefits of FLASH-RT 1-month after exposure, using a well-characterized murine orthotopic glioblastoma model. As fractionated regimens of radiotherapy are the standard of care for glioblastoma treatment, we incorporated dose fractionation to simultaneously validate the neuroprotective effects and optimized tumor treatments with FLASH-RT. RESULTS The capability of FLASH-RT to minimize the induction of radiation-induced brain toxicities has been attributed to the reduction of reactive oxygen species, casting some concern that this might translate to a possible loss of antitumor efficacy. Our study shows that FLASH and CONV-RT are isoefficient in delaying glioblastoma growth for all tested regimens. Furthermore, only FLASH-RT was found to significantly spare radiation-induced cognitive deficits in learning and memory in tumor-bearing animals after the delivery of large neurotoxic single dose or hypofractionated regimens. CONCLUSIONS The present results show that FLASH-RT delivered with hypofractionated regimens is able to spare the normal brain from radiation-induced toxicities without compromising tumor cure. This exciting capability provides an initial framework for future clinical applications of FLASH-RT.See related commentary by Huang and Mendonca, p. 662.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ioannis G Petridis
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Philippe Fuchs
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Maude Gondré
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - François Bochud
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
4
|
Machado KDC, Paz MFCJ, Oliveira Santos JVD, da Silva FCC, Tchekalarova JD, Salehi B, Islam MT, Setzer WN, Sharifi-Rad J, de Castro e Sousa JM, Cavalcante AADCM. Anxiety Therapeutic Interventions of β-Caryophyllene: A Laboratory-Based Study. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The bicyclic sesquiterpene β-caryophyllene (BCP) has diverse biological activities, including antioxidant, anti-inflammatory, antidiabetic, and analgesic effects. This study evaluates anxiolytic, toxicity, and antioxidant effects of BCP using in vitro and in vivo test models. The anxiolytic effects were tested in Swiss albino mice ( Mus musculus) by applying the elevated plus-maze, rota-rod, light and dark, and hiding sphere models, while the toxicity was evaluated by brine shrimp ( Artemia salina) lethality bioassay. Additionally, the antioxidant capacity was tested by using 2,2-diphenyl-1-picrylhydrazyl radical, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid hydroxyl radical scavenging, and the Saccharomyces cerevisiae test model. The results suggest that BCP exerted a dose-dependent anxiolytic-like effect on the experimental animals. It did not show toxicity in A. salina at 24 hours. BCP showed a concentration-dependent free-radical-scavenging capacity, similar to the standard antioxidant Trolox. It also showed protective and repair capacities against hydrogen peroxide-induced damaging effects in isogenic and wild-type S. cerevisiae strains. Taken together, BCP exerted antioxidant and protective effects, which can be targeted to treat neurological diseases and disorders such as anxiety.
Collapse
Affiliation(s)
- Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | | | - José Victor de Oliveira Santos
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | | | | | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - João Marcelo de Castro e Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| |
Collapse
|
5
|
Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers (Basel) 2020; 12:cancers12061671. [PMID: 32599789 PMCID: PMC7352849 DOI: 10.3390/cancers12061671] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Major advances in high precision treatment delivery and imaging have greatly improved the tolerance of radiotherapy (RT); however, the selective sparing of normal tissue and the reduction of neurocognitive side effects from radiation-induced toxicities remain significant problems for pediatric patients with brain tumors. While the overall survival of pediatric patients afflicted with medulloblastoma (MB), the most common type primary brain cancer in children, remains high (≥80%), lifelong neurotoxic side-effects are commonplace and adversely impact patients’ quality of life. To circumvent these clinical complications, we have investigated the capability of ultra-high dose rate FLASH-radiotherapy (FLASH-RT) to protect the radiosensitive juvenile mouse brain from normal tissue toxicities. Compared to conventional dose rate (CONV) irradiation, FLASH-RT was found to ameliorate radiation-induced cognitive dysfunction in multiple independent behavioral paradigms, preserve developing and mature neurons, minimize microgliosis and limit the reduction of the plasmatic level of growth hormone. The protective “FLASH effect” was pronounced, especially since a similar whole brain dose of 8 Gy delivered with CONV-RT caused marked reductions in multiple indices of behavioral performance (objects in updated location, novel object recognition, fear extinction, light-dark box, social interaction), reductions in the number of immature (doublecortin+) and mature (NeuN+) neurons and increased neuroinflammation, adverse effects that were not found with FLASH-RT. Our data point to a potentially innovative treatment modality that is able to spare, if not prevent, many of the side effects associated with long-term treatment that disrupt the long-term cognitive and emotional well-being of medulloblastoma survivors.
Collapse
|
6
|
Allen BD, Syage AR, Maroso M, Baddour AAD, Luong V, Minasyan H, Giedzinski E, West BL, Soltesz I, Limoli CL, Baulch JE, Acharya MM. Mitigation of helium irradiation-induced brain injury by microglia depletion. J Neuroinflammation 2020; 17:159. [PMID: 32429943 PMCID: PMC7236926 DOI: 10.1186/s12974-020-01790-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions. Methods Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (4He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4–6 weeks later. Results PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected. Conclusions Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Amber R Syage
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Mattia Maroso
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Valerie Luong
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Harutyun Minasyan
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Acharya MM, Baulch JE, Klein PM, Baddour AAD, Apodaca LA, Kramár EA, Alikhani L, Garcia C, Angulo MC, Batra RS, Fallgren CM, Borak TB, Stark CEL, Wood MA, Britten RA, Soltesz I, Limoli CL. New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. eNeuro 2019; 6:ENEURO.0094-19.2019. [PMID: 31383727 PMCID: PMC6709229 DOI: 10.1523/eneuro.0094-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×105 higher than those actually encountered in space. Using a new, low dose-rate neutron irradiation facility, we have uncovered that realistic, low dose-rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low-dose (18 cGy) and dose rate (1 mGy/d) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, California 94305
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Lauren A Apodaca
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Leila Alikhani
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Camillo Garcia
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Raja S Batra
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Christine M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Thomas B Borak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Marcello A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, California 94305
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697
| |
Collapse
|
8
|
Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, Ollivier J, Petit B, Jorge PG, Syage AR, Nguyen TA, Baddour AAD, Lu C, Singh P, Moeckli R, Bochud F, Germond JF, Froidevaux P, Bailat C, Bourhis J, Vozenin MC, Limoli CL. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci U S A 2019; 116:10943-10951. [PMID: 31097580 PMCID: PMC6561167 DOI: 10.1073/pnas.1901777116] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s-1). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy⋅s-1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Leila Alikhani
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Chakradhar Yakkala
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Benoit Petit
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Amber R Syage
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Thuan A Nguyen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Celine Lu
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Paramvir Singh
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland;
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695;
| |
Collapse
|
9
|
Tsoutsou P, Montay-Gruel P, Vozenin MC. The Era of Modern Radiation Therapy: Innovations to Spare Normal Tissues. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_70-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Parihar VK, Maroso M, Syage A, Allen BD, Angulo MC, Soltesz I, Limoli CL. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Sharma P, Singla N, Dhawan DK. Evidence of Zinc in Affording Protection Against X-Ray-Induced Brain Injury in Rats. Biol Trace Elem Res 2017; 179:247-258. [PMID: 28261760 DOI: 10.1007/s12011-017-0976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170-200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-ҚB were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Wang H, Wang J, Yang Q, Zhang X, Gao P, Xu S, Sun X, Wang Y. Synthesis of a Novel Nitronyl Nitroxide Radical and Determination of its Protective Effects Against Infrasound-Induced Injury. Neurochem Res 2015; 40:1526-36. [PMID: 26100649 DOI: 10.1007/s11064-015-1602-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
Infrasound causes functional disorders and structural injury to the central nervous system. However, few anti-infrasound drugs exist, and they are inefficient. Nitronyl nitroxide radicals have been reported to be good antioxidants that act as superoxide dismutase mimics and directly react with reactive oxygen species, such as ·OH, H2O2, and O 2 (∙) -. Our previous research showed that the nitronyl nitroxide radical L-NNNBP has good protective effects against β-amyloid deposition and memory deficits in an AD rat model of APP/PS1. The objective of the present study was to find a new group of anti-infrasound drugs and determine the underlying pharmacological actions of nitronyl nitroxide radicals against infrasound-induced neuronal impairment in vivo. We synthesized a new stable nitronyl nitroxide radical, NRbt, and characterized its crystal structure. The results of the anti-oxidative damage effects of NRbt and the positive control drug tempol showed that they could significantly increase the SOD activity, CAT activity and GSH level and decrease the MDA level in rat hippocampi compared with infrasound exposure without pretreatment. Moreover, the ability of NRbt to regulate the activity or level of these biochemical markers was better than that of tempol. Our results showed that both NRbt and tempol significantly protected against the learning and memory impairments induced by infrasound exposure in a Morris water maze, but there were no significant differences in the path length or escape latency between the rats in the tempol group and the three NRbt groups (P > 0.05). In addition, the infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by NRbt and tempol. The results demonstrated that compared with the infrasound exposure group, the expression of Bcl-2 was up-regulated and the expressions of Bax and caspase-3 were down-regulated in rats pretreated with NRbt (40 mg/kg) or tempol (40 mg/kg). These results showed that the newly synthesized nitronyl nitroxide radical, NRbt, may be an effective anti-infrasound drug because of its capacity to inhibit the oxidative damage of free radicals induced by infrasound exposure.
Collapse
Affiliation(s)
- Haibo Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|