1
|
White SW, Callahan H, Smith SJ, Padilla FM. Fluoxetine attenuates the anxiolytic effects of the probiotic VSL#3 in a stress-vulnerable genetic line of aves in the chick social-separation stress test, a dual screening assay. Pharmacol Biochem Behav 2024; 245:173880. [PMID: 39277109 DOI: 10.1016/j.pbb.2024.173880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Anxiety disorders represent one of the most common and debilitating illnesses worldwide. However, the development of novel therapeutics for anxiety disorders has lagged compared to other mental illnesses. A growing body of research suggests the gut microbiota plays a role in the etiopathology of anxiety disorders and may, therefore, serve as a novel target for their treatment through the use of probiotics. The use of dietary supplements like probiotics is increasing and their interaction with pharmacotherapies is not well understood. Utilizing the chick social-separation stress test, the primary aim of this study was to evaluate the commercially-available multi-strain probiotic found in VSL#3 for potential anxiolytic-like and/or antidepressant-like effects in the stress-vulnerable Black Australorp genetic line. A secondary aim was to evaluate the interaction between probiotics and the SSRI fluoxetine. Animals were treated with either saline, probiotics, fluoxetine, or probiotics + fluoxetine for 8 days prior to exposure to a 90-min isolation stressor that produces both a panic-like (i.e., anxiety-like) state followed by a state of behavioral despair (i.e., depression-like). The 8-day probiotic regimen produced anxiolytic-like effects but did not attenuate behavioral despair. Fluoxetine failed to significantly alter behavior in either of the two phases. Moreover, the combination of fluoxetine with probiotics attenuated the anxiolytic-like effects of probiotics. The fluoxetine + probiotics combination had no effect on behavioral despair. The results of the current study align with other preclinical studies and some clinical trials suggesting probiotics may offer beneficial effects on anxiety. Investigations examining the anxiolytic-like mechanism of probiotics are needed before any conclusions can be made. Additionally, as the use of probiotics becomes more popular, research on the interactions between probiotic-microbiota and psychotropic medications is necessary.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Haylie Callahan
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| | - Sequioa J Smith
- University of Florida, Department of Neuroscience, Gainesville, FL, USA
| | - Felicia M Padilla
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| |
Collapse
|
2
|
Peña JE, Corbett BF, Tamminga CA, Bhatnagar S, Hitti FL. Investigating Resistance to Antidepressants in Animal Models. Neuroscience 2024; 548:69-80. [PMID: 38697464 DOI: 10.1016/j.neuroscience.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.
Collapse
Affiliation(s)
- Julianna E Peña
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
3
|
White SW, Squires GD, Smith SJ, Wright GM, Sufka KJ, Rimoldi JM, Gadepalli RS. Anxiolytic-like effects of an mGluR 5 antagonist and a mGluR 2/3 agonist, and antidepressant-like effects of an mGluR 7 agonist in the chick social separation stress test, a dual-drug screening model of treatment-resistant depression. Pharmacol Biochem Behav 2023:173588. [PMID: 37348610 DOI: 10.1016/j.pbb.2023.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Modulation of glutamate receptors has demonstrated anxiolytic and/or antidepressant effects in rodent stress models. The chick social-separation stress paradigm exposes socially raised aves to an isolation stressor which elicits distress vocalizations (DVocs) in an attempt to re-establish contact. The model presents a state of panic during the first 5 min followed by a state of behavioral despair during the last 60 to 90 min. Making it useful as a dual anxiolytic/antidepressant screening assay. Further research has identified the Black Australorp strain as a stress-vulnerable, treatment-resistant, and ketamine-sensitive genetic line. Utilizing this genetic line, we sought to evaluate modulation of glutamatergic receptors for potential anxiolytic and/or antidepressant effects. Separate dose-response studies were conducted for the following drugs: the AMPA PAM LY392098, the mGluR 5 antagonist MPEP, the mGluR 2/3 agonist LY404039, the mGluR 2/3 antagonist LY341495, and the mGluR 7 agonist AMN082. The norepinephrine α2 agonist clonidine and the NMDA antagonist ketamine were included as comparison for anxiolytic (anti-panic) and antidepressant effects, respectively. As in previous studies, clonidine reduced DVoc rates during the first 5 min (attenuation of panic) and ketamine elevated DVoc rates (attenuation of behavioral despair) during the last 60 min of isolation. The mGluR 2/3 agonist LY404039 and the mGluR 5 antagonist MPEP decreased DVoc rates during the first 5 min of isolation indicative of anxiolytic effects like that of clonidine while the mGluR 7 agonist AMN082 elevated DVoc rates in the later hour of isolation, representative of antidepressant effects like that of ketamine. Collectively, these findings suggest that certain glutamate targets may be clinically useful in treating panic disorder and/or treatment-resistant depression.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, United States of America.
| | - Gwendolyn D Squires
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Sequioa J Smith
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Gwendolyn M Wright
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - John M Rimoldi
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| |
Collapse
|
4
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
5
|
Carpenter JM, Jourdan MK, Fountain EM, Ali Z, Abe N, Khan IA, Sufka KJ. The effects of Sceletium tortuosum (L.) N.E. Br. extract fraction in the chick anxiety-depression model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:329-332. [PMID: 27553978 DOI: 10.1016/j.jep.2016.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum (L.) N.E. Br. has been reported to elevate mood, reduce anxiety and stress and alleviate pain. AIM OF STUDY This study sought to examine the effects of an S. tortuosum alkaloid enriched fraction in the chick anxiety-depression model, a model that shows high predictive validity as a pharmacological screening assay. MATERIAL AND METHODS Socially-raised male Silver Laced Wyandotte chicks (4-6 days old) were given IP vehicle, imipramine (10mg/kg), or S. tortuosum fraction (10, 20, 30mg/kg in Exp. 1 or 50, 75, 100mg/kg in Exp. 2) 15min prior to a 60min isolation test period in which distress vocalizations (DVoc) were continuously recorded. RESULTS Vehicle chicks displayed high DVoc rates in the anxiety phase (first 3min). DVoc rates declined about 50% (i.e., behavioral despair) in the depression phase (30-60min). S. tortuosum fraction at 75 and 100mg/kg decreased DVoc rates during the anxiety phase indicative of an anxiolytic effect. Imipramine, but not S. tortuosum groups, increased DVoc rates in the depression phase indicative of an antidepressant effect. CONCLUSIONS The findings suggest that an alkaloid enriched S. tortuosum fraction may benefit some forms of stress-related disorders.
Collapse
Affiliation(s)
- Jessica M Carpenter
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Mary K Jourdan
- Department of Psychology, University of Mississippi, University, MS 38677, USA
| | - Emily M Fountain
- Department of Psychology, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Naohito Abe
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Kenneth J Sufka
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA; Department of Psychology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Pekary AE, Sattin A, Lloyd RL. Ketamine modulates TRH and TRH-like peptide turnover in brain and peripheral tissues of male rats. Peptides 2015; 69:66-76. [PMID: 25882008 DOI: 10.1016/j.peptides.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/10/2023]
Abstract
Major depression is the largest single healthcare burden with treatments of slow onset and often limited efficacy. Ketamine, a NMDA antagonist used extensively as a pediatric and veterinary anesthetic, has recently been shown to be a rapid acting antidepressant, making it a potential lifesaver for suicidal patients. Side effects and risk of abuse limit the chronic use of ketamine. More complete understanding of the neurobiochemical mechanisms of ketamine should lead to safer alternatives. Some of the physiological and pharmacological actions of ketamine are consistent with increased synthesis and release of TRH (pGlu-His-Pro-NH2), and TRH-like peptides (pGlu-X-Pro-NH2) where "X" can be any amino acid residue. Moreover, TRH-like peptides are themselves potential therapeutic agents for the treatment of major depression, anxiety, bipolar disorder, epilepsy, Alzheimer's and Parkinson's diseases. For these reasons, male Sprague-Dawley rats were anesthetized with 162 mg/kg ip ketamine and then infused intranasally with 20 μl of sterile saline containing either 0 or 5 mg/ml Glu-TRH. One, 2 or 4h later, the brain levels of TRH and TRH-like peptides were measured in various brain regions and peripheral tissues. At 1h in brain following ketamine only, the levels of TRH and TRH-like peptides were significantly increased in 52 instances (due to increased biosynthesis and/or decreased release) or decreased in five instances. These changes, listed by brain region in order of decreasing number of significant increases (↑) and/or decreases (↓), were: hypothalamus (9↑); piriform cortex (8↑); entorhinal cortex (7↑); nucleus accumbens (7↑); posterior cingulate (5↑); striatum (4↑); frontal cortex (2↑,3↓); amygdala (3↑); medulla oblongata (1↑,2↓); cerebellum (2↑); hippocampus (2↑); anterior cingulate (2↑). The corresponding changes in peripheral tissues were: adrenals (8↑); epididymis (4↑); testis (1↑,3↓); pancreas (1↑); prostate (1↑). We conclude that TRH and TRH-like peptides may be downstream mediators of the rapid antidepressant actions of ketamine.
Collapse
Affiliation(s)
- A Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Center for Ulcer Research and Education, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Department of Medicine, University of California, Los Angeles, CA 90073, United States.
| | - Albert Sattin
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Psychiatry Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Departments of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90073, United States; Brain Research Institute, University of California, Los Angeles, CA 90073, United States
| | - Robert L Lloyd
- Department of Psychology, University of Minnesota, 332 Bohannon Hall, 10 University Drive, Duluth, MN 55812-2494, United States
| |
Collapse
|