1
|
De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen PJ, Harmer CJ. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Transl Psychiatry 2023; 13:253. [PMID: 37438361 PMCID: PMC10338465 DOI: 10.1038/s41398-023-02533-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has been systematically assessed. Thus, the physiopathological mechanisms underlying statins' putative antidepressant or depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins' effects on depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies (some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins' antidepressant effects while also improving our understanding of the physiopathological basis of depression.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
| | - Nicola Rizzo Pesci
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Gianluca Rosso
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Giuseppe Maina
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Philip J Cowen
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| | - Catherine J Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
2
|
Muacevic A, Adler JR, Irfan H, Muthiah K, Pallipamu N, Taheri S, Thiagaraj SS, Shukla TS, Giva S, Penumetcha SS. The Anti-Depressant Effects of Statins in Patients With Major Depression Post-Myocardial Infarction: An Updated Review 2022. Cureus 2022; 14:e32323. [PMID: 36628002 PMCID: PMC9825119 DOI: 10.7759/cureus.32323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Statins are the most commonly prescribed lipid-lowering agents in patients with cardiovascular disease, and more than half of the patients with cardiovascular disease have associated depressive symptoms, particularly post-myocardial infarction, which is a major trigger for depression. In our research, we tried to understand the anti-depressant effects of statins, the mechanisms, risks and benefits, and potential drug-drug interactions with anti-depressant medications. We reviewed all the relevant information from inception up to September 2022 regarding the anti-depressant effects of statins. The database used was PubMed, and the keywords were statins, major depression, post-myocardial infarction, and hydroxy methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors. We have screened each of the articles carefully, including both human and animal studies, and found a positive correlation between reduction in depressive symptoms with statin therapy as adjunctive treatment with conventional anti-depressants. In conclusion, statins as a monotherapy are not an effective treatment for depression post-myocardial infarction but are good add-on options along with standard therapy such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs). Statins are safe and have no serious drug-drug interactions with anti-depressants. We would like to encourage large-scale observational studies and further post-marketing surveillance to improve our knowledge regarding the effectiveness of statins in the treatment of depression.
Collapse
|
3
|
Muacevic A, Adler JR, Khan KI, Al Shouli R, Allakky A, Ferguson AA, Khan AI, Abuzainah B, Mohammed L. Statins and Antidepressants: A Comprehensive Review and Clinical Outlook of the Risks and Benefits of Co-prescription (2022). Cureus 2022; 14:e32331. [PMID: 36632257 PMCID: PMC9827898 DOI: 10.7759/cureus.32331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Antidepressants are the most prescribed medications in the United States, and the most frequently prescribed antidepressants are selective serotonin reuptake inhibitors (SSRIs) followed by serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs), serotonin antagonist and reuptake inhibitors (SARIs), and norepinephrine-dopamine reuptake inhibitors (NDRI). On the other hand, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are the most prescribed lipid-lowering medications, and because the majority of patients with cardiovascular disease (CVD) have depressive symptoms, it is essential to understand the possible drug-drug interactions these two classes of medications can have, their potential synergistic mechanisms, and possible risks. In our research, we tried to understand the facts and uncover any missing links regarding the potential risks and benefits of statins and antidepressant co-prescription in the current clinical scenario. We reviewed all the relevant information from inception up to October 2022 regarding the antidepressant and statin polypharmacy. The databases we used were PubMed and PubMed Central, and the 11 keywords were "statins," "SSRI," "SNRI," "selective serotonin reuptake inhibitors," "serotonin-norepinephrine reuptake inhibitors," "antidepressants," "HMG-CoA reductase inhibitors," "tricyclic antidepressants," "monoamine oxidase inhibitors," "serotonin antagonist and reuptake inhibitors," and "norepinephrine-dopamine reuptake inhibitors." We carefully screened each of the relevant articles, including animal and human studies. In our study, we concluded that co-prescription of statins and SSRIs/SNRIs was generally safe and should be encouraged due to the potential synergistic nature of their effects in patients with CVD and major depression, and caution is advised with all other classes of antidepressants. We would like to encourage the undertaking of large-scale observational studies and proactive postmarketing surveillance to improve our knowledge regarding this topic considering the immense clinical importance it holds by directly and indirectly affecting half the population worldwide.
Collapse
|
4
|
De Giorgi R, Cowen PJ, Harmer CJ. Statins in depression: a repurposed medical treatment can provide novel insights in mental health. Int Rev Psychiatry 2022; 34:699-714. [PMID: 36786109 DOI: 10.1080/09540261.2022.2113369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Depression has a large burden, but the development of new drugs for its treatment has proved difficult. Progresses in neuroscience have highlighted several physiopathological pathways, notably inflammatory and metabolic ones, likely involved in the genesis of depressive symptoms. A novel strategy proposes to repurpose established medical treatments of known safety and to investigate their potential antidepressant activity. Among numerous candidates, growing evidence suggests that statins may have a positive role in the treatment of depressive disorders, although some have raised concerns about possible depressogenic effects of these widely prescribed medications. This narrative review summarises relevant findings from translational studies implicating many interconnected neurobiological and neuropsychological, cardiovascular, endocrine-metabolic, and immunological mechanisms by which statins could influence mood. Also, the most recent clinical investigations on the effects of statins in depression are presented. Overall, the use of statins for the treatment of depressive symptoms cannot be recommended based on the available literature, though this might change as several larger, methodologically robust studies are being conducted. Nevertheless, statins can already be acknowledged as a driver of innovation in mental health, as they provide a novel perspective to the physical health of people with depression and for the development of more precise antidepressant treatments.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
5
|
Yang C, Ni HY, Yin JJ, Zhou T, Gu QX, Chen TT, Cai CY. Atorvastatin ameliorates depressive behaviors via regulation of α7nAChR expression by PI3K/Akt-BDNF pathway in mice. Biochem Biophys Res Commun 2022; 593:57-64. [DOI: 10.1016/j.bbrc.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022]
|
6
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
7
|
De Giorgi R, Rizzo Pesci N, Quinton A, De Crescenzo F, Cowen PJ, Harmer CJ. Statins in Depression: An Evidence-Based Overview of Mechanisms and Clinical Studies. Front Psychiatry 2021; 12:702617. [PMID: 34385939 PMCID: PMC8353114 DOI: 10.3389/fpsyt.2021.702617] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Depression is a leading cause of disability, burdened by high levels of non-response to conventional antidepressants. Novel therapeutic strategies targeting non-monoaminergic pathways are sorely needed. The widely available and safe statins have several putative mechanisms of action, especially anti-inflammatory, which make them ideal candidates for repurposing in the treatment of depression. A large number of articles has been published on this topic. The aim of this study is to assess this literature according to evidence-based medicine principles to inform clinical practise and research. Methods: We performed a systematic review of the electronic databases MEDLINE, CENTRAL, Web of Science, CINAHL, and ClinicalTrials.gov, and an unstructured Google Scholar and manual search, until the 9th of April 2021, for all types of clinical studies assessing the effects of statins in depression. Results: Seventy-two studies were retrieved that investigated the effects of statins on the risk of developing depression or on depressive symptoms in both depressed and non-depressed populations. Fifteen studies specifically addressed the effects of statins on inflammatory-related symptoms of anhedonia, psychomotor retardation, anxiety, and sleep disturbances in depression. Most studies suggested a positive effect of statins on the occurrence and severity of depression, with fewer studies showing no effect, while a minority indicated some negative effects. Limitations: We provide a narrative report on all the included studies but did not perform any quantitative analysis, which limits the strength of our conclusions. Conclusions: Robust evidence indicates that statins are unlikely to lead to depressive symptoms in the general population. Promising data suggest a potential role for statins in the treatment of depression. Further clinical studies are needed, especially in specific subgroups of patients identified by pre-treatment assessments of inflammatory and lipid profiles.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Nicola Rizzo Pesci
- Department of Neurosciences “Rita Levi Montalcini,” San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| | - Alice Quinton
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Franco De Crescenzo
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Philip J. Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Catherine J. Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
8
|
Rahangdale S, Fating R, Gajbhiye M, Kapse M, Inamdar N, Kotagale N, Umekar M, Taksande B. Involvement of agmatine in antidepressant-like effect of HMG-CoA reductase inhibitors in mice. Eur J Pharmacol 2020; 892:173739. [PMID: 33220274 DOI: 10.1016/j.ejphar.2020.173739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
3-Hydroxy-3-methyl-glutaryl-co-enzyme-A (HMG-CoA) reductase inhibitors (statins) are popularly used for the treatment of obesity and hypercholesterolemia with established safety profile. Statins exhibits a wide range of neurobehavioral effects in addition to their peripheral actions, and may be beneficial in treatment of psychiatric conditions. Present study investigated the role of agmatine and imidazoline receptors in antidepressant-like effect of statins in mouse forced swimming test (FST). The antidepressant-like effect of atorvastatin (5 mg/kg, p.o.) and simvastatin (10 mg/kg, p.o.) was potentiated by pretreatment with agmatine (5 mg/kg, i.p.) as well as the drugs known to increase endogenous agmatine levels in brain viz., L-arginine (40 μg/mouse, i.c.v.), an agmatine biosynthetic precursor; arcaine (50 μg/mouse, i.c.v), agmatinase inhibitor; and aminoguanidine (6.5 μg/mouse, i.c.v.), a diamine oxidase inhibitor. Further, both the statins increased agmatine levels within hippocampus and prefrontal cortex. Conversely, prior administration of I1 receptor antagonist, efaroxan (1 mg/kg, i.p.) and I2 receptor antagonist, idazoxan (0.25 mg/kg, i.p.) blocked the antidepressant-like effect of statins and their synergistic combination with agmatine. These results demonstrate the involvement of agmatine and imidazoline receptors in antidepressant-like effect of statins and suggest as a potential therapeutic target for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Rajshree Fating
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Mona Gajbhiye
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Mona Kapse
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Nazma Inamdar
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S, 444604, India
| | - Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India; Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S, 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India.
| |
Collapse
|
9
|
Statins in the treatment of depression: Hype or hope? Pharmacol Ther 2020; 215:107625. [DOI: 10.1016/j.pharmthera.2020.107625] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
|
10
|
Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Doneda DL, Lopes L, Rios-Santos F, Lima E, Buss ZS, Viola GG, Vandresen-Filho S. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 2019; 146:279-286. [PMID: 30690060 DOI: 10.1016/j.brainresbull.2019.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/21/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Clinical and pre-clinical evidences indicate an association between inflammation and depression since increased levels of pro-inflammatory cytokines are associated with depression-related symptoms. Atorvastatin is a cholesterol-lowering statin that possesses pleiotropic effects including neuroprotective and antidepressant actions. However, the putative neuroprotective effect of atorvastatin treatment in the acute inflammation mice model of depressive-like behaviour has not been investigated. In the present study, we aimed to investigate the effect of atorvastatin treatment on lipopolysaccharide (LPS) induced depressive-like behaviour in mice. Mice were treated with atorvastatin (1 or 10 mg/kg, v.o.) or fluoxetine (30 mg/kg, positive control, v.o.) for 7 days before LPS (0.5 mg/kg, i.p.) injection. Twenty four hours after LPS infusion, mice were submitted to the forced swim test, tail suspension test or open field test. After the behavioural tests, mice were sacrificed and the levels of tumour necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), glutathione and malondialdehyde were measured. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment prevented LPS-induced increase in the immobility time in the forced swim and tail suspension tests with no alterations in the locomotor activity evaluated in the open field test. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment also prevented LPS-induced increase in TNF-α and reduction of BDNF levels in the hippocampus and prefrontal cortex. Treatment with atorvastatin (1 or 10 mg/kg/day) or fluoxetine prevented LPS-induced increase in lipid peroxidation and the reduction of glutathione levels in the hippocampus and prefrontal cortex. The present study suggests that atorvastatin treatment exerted neuroprotective effects against LPS-induced depressive-like behaviour which may be related to reduction of TNF-α release, oxidative stress and modulation of BDNF expression.
Collapse
Affiliation(s)
- E H Taniguti
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Y S Ferreira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - I J V Stupp
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil; Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E B Fraga-Junior
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - D L Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - L Lopes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - F Rios-Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Z S Buss
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - G G Viola
- Programa de Pós-Graduação em Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Mossoró, Rua Raimundo Firmino de Oliveira, 400- Conj. Ulrick Graff, CEP 59628-330, Mossoró, RN, Brazil
| | - S Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
11
|
Husain MI, Chaudhry IB, Khoso AB, Husain MO, Rahman RR, Hamirani MM, Hodsoll J, Carvalho AF, Husain N, Young AH. Adjunctive simvastatin for treatment-resistant depression: study protocol of a 12-week randomised controlled trial. BJPsych Open 2019; 5:e13. [PMID: 30762508 PMCID: PMC6381416 DOI: 10.1192/bjo.2018.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A third of patients diagnosed with major depressive disorder (MDD) experience treatment-resistant depression (TRD). Relatively few pharmacological agents have established efficacy for TRD. Therefore, the evaluation of novel treatments for TRD is a pressing priority. Statins are pleiotropic agents and preclinical studies as well as preliminary clinical trials have suggested that these drugs may have antidepressant properties.AimsTo report on a protocol for a 12-week, randomised, double-blind, placebo-controlled trial of add-on treatment with simvastatin for patients meeting DSM-5 criteria for MDD who have failed to respond to at least two adequate trials with approved antidepressants. The trial has been registered with Clinicaltrials.gov in (ClinicalTrials.gov identifier: NCT03435744). METHOD After screening and randomisation to the two parallel arms of the trial, 75 patients will receive simvastatin and 75 patients will receive placebo as adjuncts to treatment as usual. The primary outcome is change in Montgomery-Åsberg Depression Rating Scale scores from baseline to week 12 and secondary outcomes include changes in scores on the 24-item Hamilton Rating Scale for Depression, the Clinical Global Impression scale, the 7-item Generalized Anxiety Disorder scale and change in body mass index from baseline to week 12. Assessments will take place at screening, baseline, and weeks 2, 4, 8 and 12. Checklists for adverse effects will be undertaken at each visit. Simvastatin (20 mg) will be given once daily. Other secondary outcomes include C-reactive protein and plasma lipids measured at baseline and week 12. RESULTS This trial will assess simvastatin's efficacy and tolerability as an add-on treatment option for patients with TRD and provide insights into its putative mechanisms of action. CONCLUSIONS As the first trial investigating the use of simvastatin as an augmentation strategy in patients with TRD, if the results indicate that adjuvant simvastatin is efficacious in reducing depressive symptoms, it will deliver immediate clinical benefit.Declaration of interestI.B.C. and N.H. have given lectures and advice to Eli Lilly, Bristol Myers Squibb, Lundbeck, Astra Zeneca and Janssen pharmaceuticals for which they or their employing institution have been reimbursed. R.R. and M.M.H. have received educational grants and support for academic meetings from Pfizer, Roche, Novartis and Nabiqasim. A.H.Y. has been commissioned to provide lectures and advice to all major pharmaceutical companies with drugs used in affective and related disorders. A.H.Y. has undertaken investigator-initiated studies from Astra Zeneca, Eli Lilly, Lundbeck and Wyeth. None of the companies have a financial interest in this research.
Collapse
Affiliation(s)
| | - Imran B. Chaudhry
- Honorary Professor of Psychiatry, University of Manchester, UK; and Ziauddin University Karachi, Pakistan
| | - Ameer B. Khoso
- Trial Manager, Pakistan Institute of Living and Learning, Pakistan
| | | | - Raza R. Rahman
- Professor of Psychiatry, Dow University of Health Sciences, Pakistan
| | | | - John Hodsoll
- Clinician Scientist, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | | | | | - Allan H. Young
- Chair of Mood Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
12
|
Statin Function as an Anti-inflammation Therapy for Depression in Patients With Coronary Artery Disease by Downregulating Interleukin-1β. J Cardiovasc Pharmacol 2016; 67:129-35. [PMID: 26398164 DOI: 10.1097/fjc.0000000000000323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is well known that inflammation contributes to the development of coronary artery disease (CAD) and depressive symptoms. Previous studies have shown that long-term application of statin reduces the occurrence of depression in patients with CAD. However, the mechanism remains unclear. We hypothesized that inflammation contributes to depression in patients with CAD and statin function as an anti-inflammation therapy for those depressive patients. Patients with confirmed CAD hospitalized in the Department of Cardiology of Tongji Hospital in Shanghai, China, were enrolled. Depression was identified as none (ND), mild (MiD), moderate (MoD), or severe (SD) on the basis of scores of the patient health questionnaire with 9 items. Inflammatory factors in peripheral blood were measured using a chemiluminescence immunoassay and Bio-plex. Luciferase expression level was detected using the Dual-Luciferase Reporter Assay System for IL-1β or NF-κB expression by transfection in human umbilical vein endothelial cells, and patient serum was added. Data obtained from 217 patients with CAD were analyzed. The IL-1β level of CAD with SD was 14.70, which was significantly higher than that of CAD with ND 7.52, MiD 7.73, or MoD 8.63. Luciferase reporter gene analysis showed that IL-1β or NF-κB expression level was upregulated by the serum of CAD and depression patients. After the addition of atorvastatin, IL-1β or NF-κB luciferase reporter expression level decreased. It suggested that depression in patients with CAD is associated with inflammation. Statin may function as an anti-inflammation therapy for depression in patients with CAD by downregulation of IL-1β.
Collapse
|
13
|
Ludka FK, Constantino LC, Dal-Cim T, Binder LB, Zomkowski A, Rodrigues ALS, Tasca CI. Involvement of PI3K/Akt/GSK-3β and mTOR in the antidepressant-like effect of atorvastatin in mice. J Psychiatr Res 2016; 82:50-7. [PMID: 27468164 DOI: 10.1016/j.jpsychires.2016.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/30/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Atorvastatin is a cholesterol-lowering statin that has been shown to exert several pleiotropic effects in the nervous system as a neuroprotective and antidepressant-like agent. Antidepressant-like effect of atorvastatin in mice is mediated by glutamatergic and serotoninergic receptors, although the precise intracellular signaling pathways involved are unknown. PI3K/Akt/GSK-3β/mTOR signaling pathway has been associated to neurobiology of depression and seems to be modulated by some pharmacological antidepressant strategies. The present study investigated the participation of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of an acute atorvastatin treatment in mice. Atorvastatin sub-effective (0.01 mg/kg) or effective (0.1 mg/kg) doses in the tail suspension test (TST) was administered orally alone or in combination with PI3K, GSK-3β or mTOR inhibitors. The administration of PI3K inhibitor, LY294002 (10 nmol/site, i.c.v) completely prevented the antidepressant-like effect of atorvastatin (0.1 mg/kg, p.o.). The participation of GSK-3β in the antidepressant-like effect of atorvastatin was demonstrated by co-administration of a sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) with AR-A014418 (0.01 μg/site, i.c.v., a selective GSK-3β inhibitor) or with lithium chloride (10 mg/kg, p.o., a non-selective GSK-3β inhibitor). The mTOR inhibitor, rapamycin (0.2 nmol/site, i.c.v.) was also able to prevent atorvastatin (0.1 mg/kg, p.o.) antidepressant-like effect. These behavioral findings were supported by neurochemical observations, as atorvastatin treatment increased the immunocontent of the phosphorylated isoforms of Akt, GSK-3β and mTOR in the hippocampus of mice. Taken together, our results suggest an involvement of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of atorvastatin in mice.
Collapse
Affiliation(s)
- Fabiana Kalyne Ludka
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Curso de Farmácia, Universidade do Contestado, 89460-000, Canoinhas, SC, Brazil.
| | - Leandra Celso Constantino
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Tharine Dal-Cim
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Andréa Zomkowski
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
14
|
Atorvastatin Protects from Aβ 1-40-Induced Cell Damage and Depressive-Like Behavior via ProBDNF Cleavage. Mol Neurobiol 2016; 54:6163-6173. [PMID: 27709490 DOI: 10.1007/s12035-016-0134-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Intracerebroventricular (icv) amyloid-beta (Aβ)1-40 infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aβ1-40 infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aβ1-40-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice. Atorvastatin treatment (10 mg/kg, p.o., once a day for seven consecutive days) abolished depressive-like and anhedonic-like behaviors induced by Aβ1-40 (400 pmol/site, icv) infusion. Aβ1-40-induced hippocampal cell damage was reversed by atorvastatin treatment. Aβ1-40 infusion decreased glutamate uptake in hippocampal slices, and atorvastatin did not altered it. Glutamine synthetase activity was not altered by any treatment. Atorvastatin also increased hippocampal mature brain-derived neurotrophic factor (mBDNF)/precursor BDNF (proBDNF) ratio, suggesting an increase of proBDNF to mBDNF cleavage. Accordingly, increased tissue-type plasminogen activator (tPA) and p11 genic expression were observed in hippocampus of atorvastatin-treated mice. Atorvastatin displays antidepressant-like and neuroprotective effects against Aβ1-40-induced toxicity, and these effects may involve tPA- and p11-mediated cleavage of proBDNF to mBDNF.
Collapse
|
15
|
Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 2016; 232:281-286. [DOI: 10.1002/jcp.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Veronica Cartocci
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Michela Servadio
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Viviana Trezza
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Valentina Pallottini
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| |
Collapse
|
16
|
The effect of prolonged simvastatin application on serotonin uptake, membrane microviscosity and behavioral changes in the animal model. Physiol Behav 2016; 158:112-20. [DOI: 10.1016/j.physbeh.2016.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/23/2022]
|
17
|
Ludka FK, Dal-Cim T, Binder LB, Constantino LC, Massari C, Tasca CI. Atorvastatin and Fluoxetine Prevent Oxidative Stress and Mitochondrial Dysfunction Evoked by Glutamate Toxicity in Hippocampal Slices. Mol Neurobiol 2016; 54:3149-3161. [DOI: 10.1007/s12035-016-9882-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/21/2016] [Indexed: 01/04/2023]
|
18
|
|
19
|
Vandresen-Filho S, França LM, Alcantara-Junior J, Nogueira LC, de Brito TM, Lopes L, Junior FM, Vanzeler ML, Bertoldo DB, Dias PG, Colla ARS, Hoeller A, Duzzioni M, Rodrigues ALS, de Lima TCM, Tasca CI, Viola GG. Statins enhance cognitive performance in object location test in albino Swiss mice: involvement of beta-adrenoceptors. Physiol Behav 2015; 143:27-34. [PMID: 25700896 DOI: 10.1016/j.physbeh.2015.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/kg or 10 mg/kg (v.o.) or simvastatin 10 mg/kg or 20 mg/kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of the used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improve the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation.
Collapse
Affiliation(s)
- Samuel Vandresen-Filho
- Programa de Pós-graduação em Neurociências, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil; Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Lucas Moreira França
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - José Alcantara-Junior
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Lucas Caixeta Nogueira
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Thiago Marques de Brito
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Lousã Lopes
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Fernando Mesquita Junior
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Maria Luzinete Vanzeler
- Departamento de Ciências Básicas em Saúde, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, MT, Brazil
| | - Daniela Bohn Bertoldo
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Paula Gomes Dias
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil; Laboratório de Genética do Comportamento, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André R S Colla
- Programa de Pós-graduação em Neurociências, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Alexandre Hoeller
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Marcelo Duzzioni
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Programa de Pós-graduação em Neurociências, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil; Departamento de Bioquímica, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Thereza C M de Lima
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Programa de Pós-graduação em Neurociências, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil; Departamento de Bioquímica, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Giordano Gubert Viola
- Programa de Pós-graduação em Neurociências, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|