1
|
Gračan R, Blažević SA, Brižić M, Hranilovic D. Beyond the Brain: Perinatal Exposure of Rats to Serotonin Enhancers Induces Long-Term Changes in the Jejunum and Liver. Biomedicines 2024; 12:357. [PMID: 38397959 PMCID: PMC10887406 DOI: 10.3390/biomedicines12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5HT) homeostasis is essential for many physiological processes in the central nervous system and peripheral tissues. Hyperserotonemia, a measurable sign of 5HT homeostasis disruption, can be caused by 5HT-directed treatment of psychiatric and gastrointestinal diseases. Its impact on the long-term balance and function of 5HT in the peripheral compartment remains unresolved and requires further research due to possible effects on human health. We explored the effects of perinatal 5HT imbalance on the peripheral organs responsible for serotonin metabolism-the jejunum, a synthesis site, and the liver, a catabolism site-in adult rats. Hyperserotonemia was induced by subchronic treatment with serotonin precursor 5-hydroxytryptophan (5HTP) or serotonin degradation inhibitor tranylcypromine (TCP). The jejunum and liver were collected on postnatal day 70 and analyzed histomorphometrically. Relative mRNA levels of 5HT-regulating proteins were determined using qRT-PCR. Compared to controls, 5HTP- and TCP-treated rats had a reduced number of 5HT-producing cells and expression of the 5HT-synthesising enzyme in the jejunum, and an increased expression of 5HT-transporter accompanied by karyomegaly in hepatocytes, with these differences being more pronounced in the TCP-treated animals. Here, we report that perinatal 5HT disbalance induced long-term cellular and molecular changes in organs regulating 5HT-metabolism, which may have a negative impact on 5HT availability and function in the periphery. Our rat model demonstrates a link between the developmental abnormalities of serotonin homeostasis and 5HT-related changes in adult life and may be suitable for exploring the neurobiological substrates of vulnerability to behavioral and metabolic disorders, as well as for modeling the adverse effects of the prenatal exposure to 5HT enhancers in the human population.
Collapse
Affiliation(s)
- Romana Gračan
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sofia Ana Blažević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Matea Brižić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Dubravka Hranilovic
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| |
Collapse
|
2
|
Krum BN, de Freitas CM, Busanello A, Schaffer LF, Fachinetto R. Ex vivo and in vitro inhibitory potential of Kava extract on monoamine oxidase B activity in mice. J Tradit Complement Med 2021; 12:115-122. [PMID: 35528470 PMCID: PMC9072822 DOI: 10.1016/j.jtcme.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background and aim Experimental procedure Results Conclusion Kava extract confirmed anxiolytic-like effect in mice. Kava extract reduced MAO-B activity in cortex and in the region containing substantia nigra in mice. Kava extract inhibited reversibly the MAO-B activity in vitro.
Collapse
|
3
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
4
|
Morales-Navas M, Castaño-Castaño S, Pérez-Fernández C, Sánchez-Gil A, Teresa Colomina M, Leinekugel X, Sánchez-Santed F. Similarities between the Effects of Prenatal Chlorpyrifos and Valproic Acid on Ultrasonic Vocalization in Infant Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176376. [PMID: 32882988 PMCID: PMC7504564 DOI: 10.3390/ijerph17176376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 01/13/2023]
Abstract
Background: In recent years, ultrasonic vocalizations (USV) in pups has become established as a good tool for evaluating behaviors related to communication deficits and emotional states observed in autism spectrum disorder (ASD). Prenatal valproic acid (VPA) exposure leads to impairments and social behavior deficits associated with autism, with the effects of VPA being considered as a reliable animal model of ASD. Some studies also suggest that prenatal exposure to chlorpyrifos (CPF) could enhance autistic-like behaviors. Methods: In order to explore these similarities, in the present study we tested whether prenatal exposure to CPF at GD12.5–14.5 produces effects that are comparable to those produced by prenatal VPA exposure at GD12.5 in infant Wistar rats. Using Deep Squeek software, we evaluated total number of USVs, latency to the first call, mean call duration, principal frequency peak, high frequency peak, and type of calls. Results: Consistent with our hypothesis, we found that exposure to both CPF and VPA leads to a significantly smaller number of calls along with a longer latency to produce the first call. No significant effects were found for the remaining dependent variables. Conclusions: These results suggest that prenatal exposure to CPF could produce certain behaviors that are reminiscent of those observed in ASD patients.
Collapse
Affiliation(s)
- Miguel Morales-Navas
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain; (S.C.-C.); (C.P.-F.); (A.S.-G.)
- Correspondence: (M.M.-N.); (F.S.-S.); Tel.: +34-950-214631 (F.S.-S)
| | - Sergio Castaño-Castaño
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain; (S.C.-C.); (C.P.-F.); (A.S.-G.)
- Department of Health Sciences, Universidad Europea del Atlántico, Calle Isabel Torres, 21, 39011 Santander, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain; (S.C.-C.); (C.P.-F.); (A.S.-G.)
| | - Ainhoa Sánchez-Gil
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain; (S.C.-C.); (C.P.-F.); (A.S.-G.)
| | - María Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, C/Carretera de Valls, s/n, 43007 Tarragona, Spain;
| | - Xavier Leinekugel
- Institut de Neurobiologie de la Mediterranée (INMED), INSERM UMR1249, Aix-Marseille University, Parc Scientifique de Luminy BP.13, CEDEX 09, 13273 Marseille, France;
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain; (S.C.-C.); (C.P.-F.); (A.S.-G.)
- Correspondence: (M.M.-N.); (F.S.-S.); Tel.: +34-950-214631 (F.S.-S)
| |
Collapse
|
5
|
Han XM, Huang F, Jiao ML, Liu HR, Zhao ZH, Zhan HQ, Guo SY. Antidepressant Activity of Euparin: Involvement of Monoaminergic Neurotransmitters and SAT1/NMDAR2B/BDNF Signal Pathway. Biol Pharm Bull 2020; 43:1490-1500. [PMID: 32788507 DOI: 10.1248/bpb.b20-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depression is the most significant risk factor for suicide, yet the causes are complex and disease mechanism remains unclear. The incidence and disability rate of depression are very high and the efficacy of some traditional antidepressants is not completely satisfactory. Recently, some studies have found that benzofurans have anti-oxidation and anti-monoamine oxidase properties, which are related to depression. Euparin is a monomer compound of benzofuran, previous work by our team found that it improves the behavior of depressed mice. However, additional antidepressant effects and mechanisms of Euparin have not been reported. In this study, the Chronic Unpredictable Mild Stress (CUMS) model of mice was used to further investigate the effect and mechanism of Euparin on depression. Results showed that Euparin (8, 16 and 32 mg/kg) reduced depression-like behavior in mice compared with the model group. Meanwhile, all doses of Euparin were found to increase the contents of monoamine neurotransmitter and decrease monoamine oxidase and reactive oxygen species (ROS) levels in brain of depression mice. Additionally, Euparin restored CUMS-induced decrease of Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) and brain derived neurotrophic factor (BDNF) expression. These findings demonstrate that Euparin has antidepressant properties, and its mechanism involves the SAT1/NMDAR2B/BDNF signaling pathway.
Collapse
Affiliation(s)
- Xu-Meng Han
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Ming-Li Jiao
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Hui-Ru Liu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Zheng-Hang Zhao
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center
| | - He-Qin Zhan
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Shi-Yu Guo
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| |
Collapse
|
6
|
Schwarting RKW, Wöhr M. Isolation-induced ultrasonic vocalizations in pups: A comparison between Long-Evans, Sprague-Dawley, and Wistar rats. Dev Psychobiol 2018; 60:534-543. [DOI: 10.1002/dev.21738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/22/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Marburg Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB); Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Marburg Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB); Marburg Germany
| |
Collapse
|
7
|
Wöhr M, van Gaalen MM. Pharmacological Studies on the Role of Serotonin in Regulating Socioemotional Ultrasonic Vocalizations in Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Mota CMD, Rodrigues-Santos C, Fernández RAR, Carolino ROG, Antunes-Rodrigues J, Anselmo-Franci JA, Branco LGS. Central serotonin attenuates LPS-induced systemic inflammation. Brain Behav Immun 2017; 66:372-381. [PMID: 28723348 DOI: 10.1016/j.bbi.2017.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a neuromodulator involved in several central-mediated mechanisms, such as endocrine processes, behavior, and sleep. Dysfunction of the serotonergic system is mainly linked to psychiatric disorders, but emerging evidence suggests that immune system activation may also alter brain 5-HT signaling. However, whether central 5-HT modulates systemic inflammation (SI) remains unknown. For this purpose, male Wistar rats (280-350g, 8-9weeks) were submitted to the experimental protocols beginning between 9 and 10AM with the performance of injections. The animals were housed at controlled conditions [temperature (25±1°C), light (06:00-18:00) and humidity (60-65%)]. Thus, we measured 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the anteroventral preoptic region [(AVPO) - the hierarchically most important region for body temperature (Tb) control] during lipopolysaccharide (LPS)-induced SI. We also combined LPS (100μg/kg) treatment with intracerebroventricular (icv) injection of 5-HT (5, 10 and 40μg/μL) and measured Tb ("hallmark" of SI), AVPO prostaglandin E2 [(PGE2) - an essential mediator of fever] and prostaglandin D2 [(PGD2) - a cryogenic mediator], plasma corticosterone [(CORT) - a stress marker with an endogenous anti-inflammatory effect] and interleukin-6 [(IL-6) - an immune mediator] levels. Detection limits of PGE2, PGD2, CORT and IL-6 assays were 39.1-2500pg/mL, 19.5-2500pg/mL, 0.12-2000μg/dL, and 0.125-8ng/mL, respectively. We also assessed tail skin temperature [used to calculate heat loss index (HLI)] to assess a key thermoeffector mechanism. As expected we observed LPS-induced increases in Tb, AVPO PGE2 (whereas PGD2 remained unchanged), plasma CORT and IL-6 levels, as well as a decrease in HLI. These changes were accompanied by reduced levels of AVPO 5-HT and 5-HIAA. Furthermore, we also observed a negative correlation between 5-HT and plasma CORT levels. Moreover, icv 5-HT (5, 10 and 40μg/μL) microinjection caused a U-shaped dose-response curve in LPS fever, in which the intermediate dose reduced the febrile response. Icv 5-HT (10μg/μL) microinjection prevented the LPS-induced increases in AVPO PGE2 (whereas not altering PGD2), plasma CORT and IL-6 levels, as well as preventing reduced HLI. Our data are consistent with the notion that AVPO 5-HT synthesis is down-regulated during SI, favoring AVPO PGE2 synthesis and consequently potentiating the immune response. These results reveal a novel effect of central 5-HT as an anti-inflammatory neuromodulator that may take place during psychiatric disorder treatment with 5-HT reuptake inhibitors as well as suggesting that 5-HT modulation per se is a potential therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Rodrigues-Santos
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo A R Fernández
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ruither O G Carolino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janete A Anselmo-Franci
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Boulanger-Bertolus J, Rincón-Cortés M, Sullivan RM, Mouly AM. Understanding pup affective state through ethologically significant ultrasonic vocalization frequency. Sci Rep 2017; 7:13483. [PMID: 29044126 PMCID: PMC5647438 DOI: 10.1038/s41598-017-13518-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
Throughout life, rats emit ultrasonic vocalizations (USV) when confronted with an aversive situation. However, the conditions classically used to elicit USV vary greatly with the animal's age (isolation from the dam in infancy, versus nociceptive stimulation in adults). The present study is the first to characterize USV responses to the same aversive event throughout development. Specifically, infant, juvenile and adult rats were presented with mild foot-shocks and their USV frequency, duration, and relationship with respiration and behavior were compared. In juvenile and adult rats, a single class of USV is observed with an age-dependent main frequency and duration (30 kHz/400 ms in juveniles, 22 kHz/900 ms in adults). In contrast, infant rat USV were split into two classes with specific relationships with respiration and behavior: 40 kHz/300 ms and 66 kHz/21 ms. Next, we questioned if these infant USV were also emitted in a more naturalistic context by exposing pups to interactions with the mother treating them roughly. This treatment enhanced 40-kHz USV while leaving 66-kHz USV unchanged suggesting that the use of USV goes far beyond a signal studied in terms of amount of emission, and can inform us about some aspects of the infant's affective state.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France.
- University of Michigan, Ann Arbor, USA.
| | - Millie Rincón-Cortés
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| |
Collapse
|