1
|
Laux DA, Azuma MC, Cain ME. Effects of repeated voluntary oral consumption of synthetic delta-9-tetrahydrocannabinol on locomotor activity and cannabinoid receptor 1 expression. Behav Brain Res 2025; 477:115315. [PMID: 39461370 PMCID: PMC11570332 DOI: 10.1016/j.bbr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
As cannabis legalization expands, preclinical studies continue to investigate the impact of repeated exposure to delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in the plant. With the increasing popularity of cannabis infused foods, the rise of THC in medicinal applications have also expanded. The present study addresses a critical gap in existing literature by investigating the behavioral and neurobiological effects of low-dose edible THC in a preclinical rodent model. Adult male rats were administered synthetic-THC (Dronabinol) (0.0625 mg/kg, 0.125 mg/kg, and 0.25 mg/kg) or vehicle (sesame oil) through edible cookies, 90 min prior to eight locomotor sessions. Locomotor activity significantly increased in both 0.0625 mg/kg and 0.25 mg/kg THC groups, indicating a dose-dependent relationship. Repeated 0.25 mg/kg THC administration dose-dependently reduced cannabinoid receptor 1 expression in the hippocampus. The observed neurobiological change from low dose oral THC advances our understanding of repeated cannabis use. These findings also emphasize the importance of refining rodent models for translational relevance.
Collapse
Affiliation(s)
- Dylan A Laux
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Miki C Azuma
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
van Ingelgom T, Didone V, Godefroid L, Quertemont É. Effects of social housing conditions on ethanol-induced behavioral sensitization in Swiss mice. Psychopharmacology (Berl) 2024; 241:987-1000. [PMID: 38206359 DOI: 10.1007/s00213-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
RATIONALE In previous animal model studies, it was shown that drug sensitization is dependent upon physical environmental conditions. However, the effects of social housing conditions on drug sensitization is much less known. OBJECTIVE The aim of the present study was to investigate the effects of social conditions, through the size of housing groups, on ethanol stimulant effects and ethanol-induced behavioral sensitization in mice. MATERIALS AND METHODS Male and female Swiss mice were housed in groups of different sizes (isolated mice, two mice per cage, four mice per cage and eight mice per cage) during a six-week period. A standard paradigm of ethanol-induced locomotor sensitization was then started with one daily injection of 2.5 g/kg ethanol for 8 consecutive days. RESULTS The results show that social housing conditions affect the acute stimulant effects of ethanol. The highest stimulant effects were observed in socially isolated mice and then gradually decreased as the size of the group increased. Although the rate of ethanol sensitization did not differ between groups, the ultimate sensitized levels of ethanol-induced stimulant effects were significantly reduced in mice housed in groups of eight. CONCLUSIONS These results are consistent with the idea that higher levels of acute and sensitized ethanol stimulant effects are observed in mice housed in stressful housing conditions, such as social isolation.
Collapse
Affiliation(s)
- Théo van Ingelgom
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Vincent Didone
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Leeloo Godefroid
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Étienne Quertemont
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium.
| |
Collapse
|
3
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
4
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre A, Polesskaya O, Richards JB, Woods LCS, Gancarz A, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547228. [PMID: 37503161 PMCID: PMC10369912 DOI: 10.1101/2023.06.30.547228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P. King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Connor D. Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Anthony M. George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B. Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
6
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
7
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
8
|
Yuan A, King N, Kharas N, Yang P, Dafny N. The effect of environment on cross-sensitization between methylphenidate and amphetamine in female rats. Physiol Behav 2022; 252:113845. [PMID: 35594929 DOI: 10.1016/j.physbeh.2022.113845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Methylphenidate (MPD) and amphetamine (AMP) are both psychostimulants that are often used to treat behavioral disorders. More recently, it has also been increasingly used illicitly for recreation as well as to improve intellectual performance. Many factors such as age, gender, genetic background, and environment govern the development of behavioral sensitization to MPD and cross-sensitization with other drugs, which are experimental behavioral markers indicating potential of substance dependence and abuse. This study examines the effects of the environment and age when MPD was exposed in adulthood alone as well as in adolescence into adulthood on cross-sensitization with AMP in female SD rats by randomizing animals to either receive the drug in a home cage or a test cage during adolescence, adulthood, or both. In a 34 day experiment, 16 groups of animals starting in adolescence were treated with saline on experimental day one (ED1), followed by a 6 day (ED2-ED7) treatment with either saline, 0.6 mg/kg AMP, 0.6, 2.5, or 10.0 mg/kg MPD. Experimental groups were then subject to a 3-day washout period (ED8-ED10) and then a retreatment with the respective drug on ED11 in adolescence (P-38 to P-49). Experiments continued in the same animal groups now in adulthood (P-60) with a saline treatment (ED1), followed by the same sequence of treatments in adolescence (ED2-ED11;P-61 to P-69). A rechallenge with the same AMP or MPD dose was performed on ED11 (P-70) followed by a single exposure to 0.6 mg/kg AMP on ED12 (P-71) to assess for cross sensitization between MPD and AMP. Animals treated with MPD in both adolescence and adulthood and in the last experimental day of AMP (ED12) showed higher intensity of cross-sensitivity between MPD and AMP as compared to animals treated with MPD only in adulthood. AMP and MPD treatment in adolescence and into adulthood in the home or test cage resulted in significantly higher responses to the drug as compared to those treated only in adulthood. Overall, we conclude that environmental alteration and adolescent exposure to MPD appeared to increase the risk of cross-sensitization to AMP in female SD rats i.e, using MPD in adolescence may increase the probability of becoming dependent on drugs of abuse. This further indicates that age, sex, and environment all influence the response to MPD and AMP, and further work is needed to elucidate the risks associated with MPD and AMP use.
Collapse
Affiliation(s)
- Anthony Yuan
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, MSB 7.208, Houston, TX 77030, United States
| | - Nicholas King
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, MSB 7.208, Houston, TX 77030, United States
| | - Natasha Kharas
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, MSB 7.208, Houston, TX 77030, United States
| | - Pamela Yang
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, MSB 7.208, Houston, TX 77030, United States
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, MSB 7.208, Houston, TX 77030, United States.
| |
Collapse
|
9
|
Environmental Enrichment Components Required to Reduce Methamphetamine-Induced Behavioral Sensitization in Mice: Examination of Behaviors and Neural Substrates. J Clin Med 2022; 11:jcm11113051. [PMID: 35683439 PMCID: PMC9181252 DOI: 10.3390/jcm11113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023] Open
Abstract
Environmental enrichment (EE) involves the presentation of various sensory, physical, social, and cognitive stimuli in order to alter neural activity in specific brain areas, which can ameliorate methamphetamine (MAMPH)-induced behavioral sensitization and comorbid anxiety symptoms. No previous studies have comprehensively examined which EE components are critical for effectively reducing MAMPH-induced behavioral sensitization and anxiety. This study examined different housing conditions, including standard housing (SH, No EE), standard EE (STEE), physical EE (PEE), cognitive EE (CEE), and social EE (SEE). In the beginning, mice were randomly assigned to the different combinations of housing conditions and injections, consisting of No EE/Saline, No EE/MAMPH, STEE/MAMPH, PEE/MAMPH, CEE/MAMPH, and SEE/MAMPH groups. Then, the mice received intraperitoneal injections of 1 mg/kg MAMPH or normal saline daily for 7 days, followed by a final injection of 0.5 mg/kg MAMPH or normal saline. After behavioral tests, all mice were examined for c-Fos immunohistochemical staining. The results showed that MAMPH induced behavioral sensitization as measured by distance traveled. MAMPH appeared to induce lowered anxiety responses and severe hyperactivity. All EE conditions did not affect MAMPH-induced lowered anxiety behaviors. STEE was likely more effective for reducing MAMPH-induced behavioral sensitization than PEE, CEE, and SEE. The c-Fos expression analysis showed that the medial prefrontal cortex (i.e., cingulate cortex 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), caudate-putamen (CPu), and hippocampus (i.e., CA1, CA3, and dentate gyrus (DG)) contributed to MAMPH-induced behavioral sensitization. The Cg1, IL, NAc, BLA, VTA, CPu, CA3, and DG also mediated STEE reductions in MAMPH-induced behavioral sensitization. This study indicates that all components of EE are crucial for ameliorating MAMPH-induced behavioral sensitization, as no individual EE component was able to effectively reduce MAMPH-induced behavioral sensitization. The present findings provide insight into the development of non-pharmacological interventions for reducing MAMPH-induced behavioral sensitization.
Collapse
|
10
|
Sullivan EDK, Locke LN, Wallin DJ, Khokhar JY, Bragg EM, Henricks AM, Doucette WT. The Impact of Adolescent Alcohol Exposure on Nicotine Behavioral Sensitization in the Adult Male Neonatal Ventral Hippocampal Lesion Rat. Front Behav Neurosci 2021; 15:760791. [PMID: 34858148 PMCID: PMC8632551 DOI: 10.3389/fnbeh.2021.760791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotine and alcohol use is highly prevalent among patients with serious mental illness, including those with schizophrenia (SCZ), and this co-occurrence can lead to a worsening of medical and psychiatric morbidity. While the mechanistic drivers of co-occurring SCZ, nicotine use and alcohol use are unknown, emerging evidence suggests that the use of drugs during adolescence may increase the probability of developing psychiatric disorders. The current study used the neonatal ventral hippocampal lesion (NVHL) rat model of SCZ, which has previously been shown to have enhanced nicotine behavioral sensitization and, following adolescent alcohol, increased alcohol consumption. Given how commonly alcohol is used by adolescents that develop SCZ, we used the NVHL rat to determine how exposure to adolescent alcohol impacts the development of nicotine behavioral sensitization in adulthood. Male Sprague-Dawley rats underwent the NVHL surgery or a sham (control) surgery and subsequently, half of each group was allowed to drink alcohol during adolescence. Nicotine behavioral sensitization was assessed in adulthood with rats receiving subcutaneous injections of nicotine (0.5 mg/kg) each day for 3 weeks followed by a nicotine challenge session 2 weeks later. We demonstrate that all groups of rats became sensitized to nicotine and there were no NVHL-specific increases in nicotine behavioral sensitization. We also found that NVHL rats appeared to develop sensitization to the nicotine paired context and that adolescent alcohol exposure blocked this context sensitization. The current findings suggest that exposure to alcohol during adolescence can influence behaviors that manifest in the adult NVHL rat (i.e., context sensitization). Interestingly, nicotine behavioral sensitization levels were not altered in the NVHL groups regardless of adolescent alcohol exposure in contrast to prior reports.
Collapse
Affiliation(s)
- Emily D K Sullivan
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Liam N Locke
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Diana J Wallin
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Jibran Y Khokhar
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Elise M Bragg
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Angela M Henricks
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Psychology, Washington State University, Pullman, WA, United States
| | - Wilder T Doucette
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
11
|
Garcia EJ, Cain ME. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations. Eur J Neurosci 2021; 54:6382-6396. [PMID: 34481424 PMCID: PMC9869284 DOI: 10.1111/ejn.15441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Overdose death rates caused by psychostimulants have increased by 22.3% annually from 2008 to 2017. Cue-evoked drug craving progressively increases and contributes to perpetual relapse. Preclinical models have determined that glutamate receptor plasticity within the nucleus accumbens (NAc) drives amplified cue-evoked drug seeking after prolonged abstinence (>40 days). Isolated condition (IC) rearing increases cocaine and amphetamine (AMP) self-administration and cue-induced reinstatement. We tested the hypothesis that housing in the IC will augment AMP seeking after short and prolonged abstinence from AMP self-administration when compared with rats reared in the enrichment condition (EC). EC and IC male rats acquired stable AMP or SAL self-administration and were tested in a cue-induced AMP-seeking test after 1 and 40 days of abstinence. After the seeking test, the whole NAc was extracted and prepared for western blot analysis. Results indicate that IC rats had more active lever presses during a brief extinction interval and during the cue-induced seeking test. After 40 days of abstinence, IC rats had more active lever presses than EC rats during the cue-induced seeking test. Western blots indicated that the expression ratio between GluA1:mGlur5 was reduced only in IC-AMP-trained rats and the ratio between GluA1:mGlur1 was positively correlated with AMP seeking after prolonged abstinence in IC-AMP rats. These results indicate that IC housing engenders a vulnerable phenotype prone to persistent AMP seeking. The behavioural momentum of this vulnerable phenotype is further revealed when AMP-associated cues are presented following prolonged abstinence.
Collapse
Affiliation(s)
- Erik J. Garcia
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| | - Mary E. Cain
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| |
Collapse
|
12
|
Barbosa-Méndez S, López-Morado C, Salazar-Juárez A. Mirtazapine-induced decrease in cocaine sensitization is enhanced by environmental enrichment in rats. Pharmacol Biochem Behav 2021; 208:173237. [PMID: 34274360 DOI: 10.1016/j.pbb.2021.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
Several studies have reported that mirtazapine attenuated the induction and expression of cocaine-induced locomotor sensitization. Animals placed in enriched housing environments have shown a decrease in cocaine-induced locomotor activity and sensitization. In addition, it has been suggested that a pharmacological treatment combined with a behavioral intervention increases the efficacy of the former. Thus, the objective of this study was to determine if dosing of mirtazapine in an enriched housing environment enhanced the mirtazapine-induced decrease on the induction and expression of cocaine-induced locomotor sensitization. Wistar male rats were dosed with cocaine (10 mg/kg, i.p.). During the drug-withdrawal phase, mirtazapine (30 mg/kg, i.p.) was administered under standard and enriched housing environmental conditions. The environmental enrichment consisted of housing the animals in enclosures with plastic toys, tunnels, and running wheels. After each administration, locomotor activity for each animal was recorded for 30 min. The study found that treatment with mirtazapine in an enriched housing environment produced an enhanced and persistent attenuation of the induction and expression of cocaine-induced locomotor sensitization. Additionally, it reduced the duration of cocaine-induced locomotor activity in the expression phase of locomotor sensitization. Dosing of mirtazapine in an enriched housing environment enhanced the effectiveness of mirtazapine to decrease cocaine-induced locomotor sensitization. This suggests the potential use of enriched environments to enhance the effect of mirtazapine.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Casandra López-Morado
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico.
| |
Collapse
|
13
|
Noschang C, Lampert C, Krolow R, de Almeida RMM. Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology (Berl) 2021; 238:927-947. [PMID: 33606060 DOI: 10.1007/s00213-021-05777-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Adolescence is known for its high level of risk-taking, and neurobiological alterations during this period may predispose to psychoactive drug initiation and progression into more severe use patterns. Stress is a risk factor for drug consumption, and post-weaning social isolation increases drug self-administration in rodents. This review aimed to provide an overview of the effects of adolescent social isolation on cocaine, amphetamine and nicotine use-related behaviours, highlighting the specific period when animals were submitted to stress and these drugs. We wondered if there was a specific period during adolescence that isolation stress would increase drug use vulnerability. A total of 323 publications from the Scopus, Web of Science and PubMed (Medline) electronic databases were identified using the words "social isolation" and "adolescence" and "drug" or "cocaine" or "amphetamine" or "nicotine", resulting in 24 articles after analyses criteria following the PRISMA statement. The main points raised were social isolation during adolescence increased cocaine self-administration, amphetamine and nicotine locomotor activity. We did not observe a pattern of a specific moment during the adolescent period that could lead to an increased vulnerability to drug use. The precise conditions under which adolescent social stress alters drug use parameters are complex and likely depend on several factors.
Collapse
Affiliation(s)
- C Noschang
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - C Lampert
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
14
|
Brancato A, Castelli V, Lavanco G, Cannizzaro C. Environmental Enrichment During Adolescence Mitigates Cognitive Deficits and Alcohol Vulnerability due to Continuous and Intermittent Perinatal Alcohol Exposure in Adult Rats. Front Behav Neurosci 2020; 14:583122. [PMID: 33100982 PMCID: PMC7546794 DOI: 10.3389/fnbeh.2020.583122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods—equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 2020; 177:108231. [DOI: 10.1016/j.neuropharm.2020.108231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 07/04/2020] [Indexed: 11/30/2022]
|
16
|
Chambers RA, Sentir AM. Integrated Effects of Neonatal Ventral Hippocampal Lesions and Impoverished Social-Environmental Rearing on Endophenotypes of Mental Illness and Addiction Vulnerability. Dev Neurosci 2020; 41:263-273. [PMID: 32160629 PMCID: PMC8454183 DOI: 10.1159/000506227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
A wide range of mental illnesses show high rates of addiction comorbidities regardless of their genetic, neurodevelopmental, and/or adverse-environmental etiologies. Understanding how the spectrum of mental illnesses produce addiction vulnerability will be key to discovering more effective preventions and integrated treatments for adults with addiction and dual diagnosis comorbidities. A population of 131 rats containing a spectrum of etiological mental illness models and degrees of severity was experimentally generated by crossing neonatal ventral hippocampal lesions (NVHL; n = 68) or controls (SHAM-operated; n = 63) with adolescent rearing in environmentally/socially enriched (ENR; n = 66) or impoverished (IMP; n = 65) conditions. This population was divided into 2 experiments: first, examining NVHL and IMP effects on novelty and mild stress-induced locomotion across 3 adolescent ages; second, looking at initial cocaine reactivity and long-term cocaine behavioral sensitization in adulthood. NVHL and IMP-environmental conditions independently produced remarkably similar and robustly significant abnormalities of hyperreactivity to novelty, mild stress, and long-term cocaine sensitization. The combined NVHL-IMP groups showed the most severe phenotypes across the board, so that the mental illness and addiction vulnerability phenotypes increased together in severity in a consistent stepwise progression from the healthiest rats to those with the greatest loading of etiological models. These findings add weight to our understanding of mental illness and addiction vulnerability as brain disorders that are biologically and developmentally unified in ways that transcend etiological causes, and yet co-intensify with increased loading of etiological conditions. Combining neurodevelopmental and adverse-environmental models of mental illness may provide an approach to identifying and therapeutically targeting cortical-striatal-limbic network mechanisms that generate addiction and dual diagnosis diseases.
Collapse
Affiliation(s)
- Robert Andrew Chambers
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA,
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, IU Neuroscience Research Center, Indianapolis, Indiana, USA,
| | - Alena M Sentir
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, IU Neuroscience Research Center, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Zhang XQ, Yu ZP, Ling Y, Zhao QQ, Zhang ZY, Wang ZC, Shen HW. Enduring effects of juvenile social isolation on physiological properties of medium spiny neurons in nucleus accumbens. Psychopharmacology (Berl) 2019; 236:3281-3289. [PMID: 31197434 DOI: 10.1007/s00213-019-05284-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE Juvenile social isolation (SI) and neglect is associated with a wide range of psychiatric disorders. While dysfunction of the corticolimbic pathway is considered to link various abnormal behaviors in SI models of schizophrenia, the enduring effects of early social deprivation on physiological properties of medium spiny neurons (MSNs) in nucleus accumbens (NAc) are not well understood. OBJECTIVES This study investigated the impacts of juvenile SI on locomotor activity to methamphetamine (METH) and neurophysiological characteristics of MSNs in the core of NAc. METHODS Socially isolated C57BL/6 mice experienced single housing for 4 weeks on postnatal day (PND) 21. The locomotor response to METH (1.0 mg/kg) was observed in both socially isolated and group-housed mice at PND 56. The effects of juvenile SI on the excitatory synaptic events in MSNs and the intrinsic excitability of MSNs in NAc core were investigated in other batches during PND 63-70. RESULTS Socially isolated mice showed locomotor hypersensitivity to METH, although the expression of locomotor sensitization to METH in socially isolated mice was not different from group-housed mice. The recordings from MSNs of SI-reared mice exhibited higher frequency and smaller amplitude of miniature/spontaneous excitatory postsynaptic current than those from group-reared mice. Moreover, SI resulted in increased intrinsic excitability of MSNs in adult mice. CONCLUSIONS These results demonstrate neuronal hyperactivity in the NAc of socially isolated mice, which could contribute to locomotor hypersensitivity to METH. Furthermore, the findings indicate a biological link between early negative life events and the vulnerability to psychostimulant-induced psychosis in adulthood.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yu Ling
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qi-Qi Zhao
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhong-Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Zheng-Chun Wang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
18
|
Matonda-Ma-Nzuzi T, Didone V, Seutin V, Tirelli E, Quertemont E. Investigating the reciprocal relationships between locomotor sensitization to ethanol and PTSD-like clusters in DBA/2J mice. Behav Brain Res 2019; 368:111909. [PMID: 30986492 DOI: 10.1016/j.bbr.2019.111909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are two conditions that co-occur frequently. The mechanistic explanations of this co-morbidity are still unclear. The goal of this study was twofold. First to investigate whether PTSD reduces the threshold for the acquisition of ethanol sensitization in an animal model of PTSD. Then to investigate whether ethanol sensitization modulates the expression of PTSD. METHODS 152 female inbred DBA/2 J mice were submitted to an inescapable footshock paradigm to induce a PTSD-like condition (PTSDLC) and to a paradigm of locomotor sensitization to ethanol. In a first experiment, mice were submitted to the PTSDLC and then repeatedly injected with either saline, 1 g/kg ethanol or 2 g/kg ethanol. Their sensitization to the locomotor stimulant effects of ethanol was then tested in an open field. In a second experiment, mice were first sensitized to the locomotor stimulant effects of ethanol and then tested for their behavioral response to PTSDLC. RESULTS In the first experiment, PTSDLC failed to induce a significant locomotor sensitization at the subthreshold dose of 1 g/kg ethanol. However, with 2 g/kg ethanol, a stronger ethanol sensitization was observed in mice submitted to the footshock relative to the control group. In the second experiment, ethanol sensitization increased only some of the behavioral clusters of PTSDLC, namely the fear generalization in a new context. CONCLUSION PTSDLC did not reduce the dose threshold for the acquisition of ethanol sensitization but strengthened the development of ethanol sensitization with effective doses. This suggests that PTSD might interact with one of the mechanisms underlying the development of alcohol sensitization. When the relationship between ethanol sensitization and PTSDLC is tested in the reverse direction, the present study only shows a significant effect of ethanol administration on the "sensitized fear" PTSD cluster.
Collapse
Affiliation(s)
- Thierry Matonda-Ma-Nzuzi
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium; Laboratory of Neurophysiology, GIGA Neurosciences, all at Liège University, B-4000, Sart Tilman, Liège, Belgium; Département de psychiatrie, Faculté de médecine, Université de Kinshasa, Democratic Republic of the Congo
| | - Vincent Didone
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium
| | - Vincent Seutin
- Laboratory of Neurophysiology, GIGA Neurosciences, all at Liège University, B-4000, Sart Tilman, Liège, Belgium
| | - Ezio Tirelli
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium
| | - Etienne Quertemont
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium.
| |
Collapse
|
19
|
Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood. Alcohol 2019; 77:1-10. [PMID: 30240808 DOI: 10.1016/j.alcohol.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the influence of rearing environments concurrent with voluntary intermittent access to ethanol on subsequent adult ethanol-related behaviors. Previous research has shown that adult rats reared in post-weaning, social isolation conditions (IC) respond more for operant ethanol compared to laboratory standard conditions (SC). Ethanol-exposed adolescents tend to consume more ethanol in adulthood than rats exposed as adults. The current study examined voluntary ethanol consumption during adolescence between IC and SC rats, subsequent operant responding for ethanol, and extinction of responding in the same rats as adults. Differences in ethanol metabolism may alter the amount of reward value per unit of ethanol consumed. Therefore, the current study also examined blood ethanol concentrations (BEC) between IC rats and SC rats. Ethanol-naïve Long-Evans rats arrived in the lab at postnatal day (PND) 21 and were separated into either IC or SC where they remained for the duration of the experiments. On PND 27, rats received intermittent access to 20% ethanol (3 days/week) for 4 or 6 weeks. Rats in the 6-week cohort were then trained to lever press for 20% ethanol in 30-min sessions followed by extinction. A separate cohort was reared in IC or SC, injected with 1.5 or 3.0 g/kg of ethanol (intraperitoneally [i.p.]), followed by BEC measurement. Overall, IC rats had higher ethanol preference and consumption during adolescence/early adulthood. IC and SC rats did not differ in their rates of operant responding for ethanol, and SC rats responded more than IC rats during extinction. There were no differences in BEC between IC and SC rats. These findings highlight the importance of the environment during rat adolescent development with isolation conditions increasing binge-like drinking and ethanol preference after 3-4 weeks without differences in metabolism as a potential factor. Additionally, the findings indicate that intermittent adolescent access to ethanol may change typical differences in operant responding patterns between IC and SC rats in adulthood.
Collapse
|
20
|
Rodríguez-Ortega E, de la Fuente L, de Amo E, Cubero I. Environmental Enrichment During Adolescence Acts as a Protective and Therapeutic Tool for Ethanol Binge-Drinking, Anxiety-Like, Novelty Seeking and Compulsive-Like Behaviors in C57BL/6J Mice During Adulthood. Front Behav Neurosci 2018; 12:177. [PMID: 30177875 PMCID: PMC6110170 DOI: 10.3389/fnbeh.2018.00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Repetitive drug/ethanol (EtOH) binge-like consumption during pre-addictive stages favors a transition to addiction in vulnerable organisms. Experimental evidence points to the therapeutic and preventive effects of environmental enrichment (EE) on drug and EtOH addiction; however, little is known regarding EE modulation of binge-like consumption in non-dependent organisms. Here, we explore the impact of early EE on binge-like EtOH consumption: (1) we test whether early EE exposure prevents binge-like EtOH intake (20% v/v) in adult mice under an intermittent drinking in the dark (iDID) schedule; (2) we evaluate the therapeutic effects of EE housing conditions on binge-like EtOH consumption in adult animals; and (3) we compare novelty-seeking and compulsive-like behaviors, and anxiety-like behavior, as measured by the Hole Board (HB) and Elevated Plus Maze (EPM) tests, respectively, in adult EE/standard environment (SE) animals. Adolescent (postnatal day 28; PND28) mice were randomly allocated to two housing conditions (4 animals/cage): EE or SE. At PND67 all the animals were exposed to a schedule of EtOH binge-like iDID. On PND92 half of the animals in each environmental condition (EE and SE) were randomly allocated to two subgroups in a crossover design, where environmental conditions were kept similar to those previously experienced or switched, finally leading to four experimental conditions: EE-EE, EE-SE, SE-SE, and SE-EE. EtOH binge-like consumption continued until PND140, when EPM and HB tests were finally conducted. The main observations were: (1) EE-reared mice showed lower EtOH binge-like intake than SE-reared mice during adulthood, which supports a protective role for EE. (2) when adult EtOH drinking SE-reared mice were switched to EE conditions, a reduction in EtOH binge-like consumption was observed, suggesting a therapeutic role for EE; however, losing EE during adulthood triggered a progressive increase in EtOH binge-like intake. Moreover, (3) EE-housed adult animals with long-term exposure to EtOH binge-drinking showed lower anxiety-like, compulsive-like, and novelty-seeking behaviors than SE-housed mice, irrespective of the specific housing conditions during adolescence. We discuss the primary impact of EE on anxiety-like neurobehavioral brain systems through which it secondarily modulates EtOH binge-like drinking.
Collapse
Affiliation(s)
| | | | - Enedina de Amo
- Departmento de Psicología, Universidad de Almería, Almería, Spain
| | - Inmaculada Cubero
- Departmento de Psicología, Universidad de Almería, Almería, Spain.,CERNEP, Universidad de Almería, Almería, Spain
| |
Collapse
|