1
|
Ademar K, Ulenius L, Loftén A, Söderpalm B, Adermark L, Ericson M. Separate mechanisms regulating accumbal taurine levels during baseline conditions and following ethanol exposure in the rat. Sci Rep 2024; 14:24166. [PMID: 39406746 PMCID: PMC11480114 DOI: 10.1038/s41598-024-74449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Ethanol-induced dopamine release in the nucleus accumbens (nAc) is associated with reward and reinforcement, and for ethanol to elevate nAc dopamine levels, a simultaneous increase in endogenous taurine is required within the same brain region. By employing in vivo microdialysis in male Wistar rats combined with pharmacological, chemogenetic and metabolic approaches, our aim with this study was to identify mechanisms underlying ethanol-induced taurine release. Our results demonstrate that the taurine elevation, elicited by either systemic or local ethanol administration, occurs both in presence and absence of action potential firing or NMDA receptor blockade. Inhibition of volume regulated anion channels did not alter the ethanol-induced taurine levels, while inhibition of the taurine transporter occluded the ethanol-induced taurine increase, putatively due to a ceiling effect. Selective manipulation of nAc astrocytes using Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) did not affect ethanol-induced taurine release. However, activation of Gi-coupled DREADDs, or metabolic inhibition using fluorocitrate, rather enhanced than depressed taurine elevation. Finally, ethanol-induced taurine increase was fully blocked in rats pre-treated with the L-type Ca2+-channel blocker nicardipine, suggesting that the release is Ca2+ dependent. In conclusion, while astrocytes appear to be important regulators of basal taurine levels in the nAc, they do not appear to be the main cells underlying ethanol-induced taurine release.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Lisa Ulenius
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
2
|
Riveros ME, Leibold NK, Retamal MA, Ezquer F. Role of histaminergic regulation of astrocytes in alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111009. [PMID: 38653364 DOI: 10.1016/j.pnpbp.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Alcohol use disorder (AUD) is a severe, yet not fully understood, mental health problem. It is associated with liver, pancreatic, and gastrointestinal diseases, thereby highly increasing the morbidity and mortality of these individuals. Currently, there is no effective and safe pharmacological therapy for AUD. Therefore, there is an urgent need to increase our knowledge about its neurophysiological etiology to develop new treatments specifically targeted at this health condition. Recent findings have shown an upregulation in the histaminergic system both in alcohol dependent individuals and in animals with high alcohol preference. The use of H3 histaminergic receptor antagonists has given promising therapeutic results in animal models of AUD. Interestingly, astrocytes, which are ubiquitously present in the brain, express the three main histamine receptors (H1, H2 and H3), and in the last few years, several studies have shown that astrocytes could play an important role in the development and maintenance of AUD. Accordingly, alterations in the density of astrocytes in brain areas such as the prefrontal cortex, ventral striatum, and hippocampus that are critical for AUD-related characteristics have been observed. These characteristics include addiction, impulsivity, motor function, and aggression. In this work, we review the current state of knowledge on the relationship between the histaminergic system and astrocytes in AUD and propose that histamine could increase alcohol tolerance by protecting astrocytes from ethanol-induced oxidative stress. This increased tolerance could lead to high levels of alcohol intake and therefore could be a key factor in the development of alcohol dependence.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Programa de Comunicación Celular en Cáncer, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago. Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
3
|
Miranda-Páez A, Marichal-Cancino BA, Sánchez-Castillo H, Vázquez-León P. Acute taurine reduced alcohol intake and preference in alcohol-experienced, but not in alcohol-näive rats by central mechanisms. Behav Brain Res 2024; 463:114892. [PMID: 38309374 DOI: 10.1016/j.bbr.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Taurine is a non-essential β sulfonated amino acid involved in a plethora of biological functions in the mammalian central nervous system. Taurine is easily accessible in energy drinks for human consumption. Previous preclinical and clinical reports suggest that acute systemic administration of taurine could inhibit some of the behavioral and metabolic effects of alcohol use disorder. Overall, both in rodent and human studies, acute taurine administration reduced voluntary alcohol intake. This study aimed to assess the pharmacological effects of taurine (intracerebroventricular; i.c.v.) on ethanol intake/preference of rats either control (i.e., alcohol naïve) or forced ethanol intake (since juvenile age with a chronic intermittent access model). In addition, to explore anxiety-like behavior (through defensive burying behavior test) as pharmacological control of taurine. We found that acute (i.c.v.) taurine reduced alcohol consumption, i.e., taurine significantly decreased both alcohol intake and preference in adult male Wistar rats. Moreover, taurine elicits an anxiolytic-like effect in all administered groups independently of previous alcohol exposure.
Collapse
Affiliation(s)
- Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo CP: 07738, México City, Mexico
| | - Bruno Antonio Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | - Hugo Sánchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Departamento de Psicobiología y Neurociencas, 1er Piso Edificio B. Universidad Nacional Autónoma de México, Avenida universidad 3004 colonia Copilco Universidad, C.P. 04510 Alcaldía de Coyoacán, CDMX, Mexico
| | - Priscila Vázquez-León
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Departamento de Psicobiología y Neurociencas, 1er Piso Edificio B. Universidad Nacional Autónoma de México, Avenida universidad 3004 colonia Copilco Universidad, C.P. 04510 Alcaldía de Coyoacán, CDMX, Mexico.
| |
Collapse
|
4
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Olsson Y, Lidö H, Ademar K, Cadeddu D, Ericson M, Söderpalm B. The GlyT1-inhibitor Org 24598 facilitates the alcohol deprivation abolishing and dopamine elevating effects of bupropion + varenicline in rats. J Neural Transm (Vienna) 2024; 131:95-106. [PMID: 37773223 PMCID: PMC10769923 DOI: 10.1007/s00702-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Alcohol Use Disorder (AUD) is a relapsing brain disorder that involves perturbations of brain dopamine (DA) systems, and combined treatment with varenicline + bupropion produces additive effects on accumbal DA output and abolishes the alcohol deprivation effect (ADE) in rats. Also, direct and indirect glycine receptor (GlyR) agonists raise basal DA, attenuate alcohol-induced DA release in the nucleus Accumbens (nAc) and reduce alcohol consumption in rats. This study in rats examines whether the GlyT1-inhibitor Org 24598, an indirect GlyR agonist, enhances the ADE-reducing and DA elevating action of the combined administration of varenicline + bupropion in lower doses than previously applied. Effects on voluntary alcohol consumption, the ADE and extracellular levels of glycine and DA in nAc were examined following treatment with Org 24598 6 and 9 mg/kg i.p., bupropion 3.75 mg/kg i.p. and varenicline 1.5 mg/kg s.c., in monotherapy or combined, using a two-bottle, free-choice alcohol consumption paradigm with an ADE paradigm, and in vivo microdialysis in male Wistar rats. Notably, all treatment regimens appeared to abolish the ADE but only the effect produced by the triple combination (Org24598 + varenicline + bupropion) was significant compared to vehicle. Hence, addition of Org 24598 may enhance the ADE-reducing action of varenicline + bupropion and appears to allow for a dose reduction of bupropion. Treatment with Org 24598 raised accumbal glycine levels but did not significantly alter DA output in monotherapy. Varenicline + bupropion produced a substantial elevation in accumbal DA output that was slightly enhanced following addition of Org 24598. Conceivably, the blockade of the ADE is achieved by the triple combination enhancing accumbal DA transmission in complementary ways, thereby alleviating a hypothesized hypodopaminergia and negative reinforcement to drink. Ultimately, combining an indirect or direct GlyR agonist with varenicline + bupropion may constitute a new pharmacological treatment principle for AUD, although further refinement in dosing and evaluation of other glycinergic compounds are warranted.
Collapse
Affiliation(s)
- Yasmin Olsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden.
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Helga Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Davide Cadeddu
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, SE, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Ademar K, Loftén A, Nilsson M, Domi A, Adermark L, Söderpalm B, Ericson M. Acamprosate reduces ethanol intake in the rat by a combined action of different drug components. Sci Rep 2023; 13:17863. [PMID: 37857829 PMCID: PMC10587117 DOI: 10.1038/s41598-023-45167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Alcohol misuse accounts for a sizeable proportion of the global burden of disease, and Campral® (acamprosate; calcium-bis-(N-acetylhomotaurinate)) is widely used as relapse prevention therapy. The mechanism underlying its effect has in some studies been attributed to the calcium moiety and not to the N-acetylhomotaurine part of the compound. We recently suggested that the dopamine elevating effect of acamprosate is mediated both by N-acetylhomotaurine and calcium in a glycine receptor dependent manner. Here we aimed to explore, by means of in vivo microdialysis, if our previous study using local administration was functionally relevant and if systemic administration of the sodium salt of N-acetylhomotaurine (sodium acamprosate; 200 mg/kg, i.p.) enhanced the effects of calcium chloride (CaCl2; 73.5 mg/kg, i.p.) on nucleus accumbens (nAc) dopamine and/or taurine levels in male Wistar rats. In addition, we investigated the impact of regular acamprosate and the combination of CaCl2 and N-acetylhomotaurine on the alcohol deprivation effect (ADE). Finally, we assessed if N-acetylhomotaurine potentiates the ethanol-intake reducing effect of CaCl2 in a two-bottle choice voluntary ethanol consumption model followed by an ADE paradigm. Systemic administration of regular acamprosate, sodium acamprosate and CaCl2 all trended to increase nAc dopamine whereas the combination of CaCl2 and sodium acamprosate produced a significant increase. Sodium acamprosate elevated extracellular taurine levels without additional effects of CaCl2. Ethanol intake was significantly reduced by systemic administration of CaCl2 without additional effects of the combination of CaCl2 and sodium acamprosate. Both acamprosate and CaCl2 combined with sodium acamprosate blocked the ADE following acute treatment. The data presented suggest that CaCl2 and N-acetylhomotaurine act in concert on a neurochemical level, but calcium appears to have the predominant effect on ethanol intake.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathilda Nilsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
7
|
Quintrell E, Wyrwoll C, Rosenow T, Larcombe A, Kelty E. The effects of acamprosate on maternal and neonatal outcomes in a mouse model of alcohol use disorders. Physiol Behav 2023; 259:114037. [PMID: 36427542 DOI: 10.1016/j.physbeh.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite the teratogenic effects of alcohol, little is known about the safety of pharmacotherapies such as acamprosate for the treatment of alcohol use disorders in pregnancy. The aims of this study were to investigate, in a mouse model, the effects of maternally administered acamprosate on maternal and neonatal health, offspring neurodevelopment and behaviour, as well as examine whether acamprosate reduces the neurological harm associated with alcohol consumption in pregnancy. METHODS Dams were randomly allocated to one of four treatment groups: (i) control (water), (ii) acamprosate (1.6 g/L), (iii) alcohol (5% v/v) or (iv) acamprosate and alcohol (1.6 g/L; 5% v/v ethanol) and exposed from 2-weeks pre-pregnancy until postpartum day 7. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of neurodevelopment. At 8 weeks of age, motor coordination, anxiety, locomotion, and memory of the adult offspring were also examined. RESULTS Exposure to acamprosate did not affect maternal and birth outcomes (mating success, gestational weight gain, litter size, sex ratio), neonatal outcomes (head and body length, postnatal weight) or neurodevelopmental markers (righting reflex and negative geotaxis). Acamprosate exposure did not affect offspring motor control, locomotion or anxiety, however the effects on short-term memory remain uncertain. Prenatal alcohol exposed offspring exhibited various alterations, such as lower postnatal weight, smaller head (p = 0.04) and body lengths (p = 0.046) at postnatal day 70 (males only), increased negative geotaxis speed (p = 0.03), an increased time spent in the inner zone of the open field (p = 0.02). Acamprosate mitigated the effects of alcohol for negative geotaxis at postnatal day 7 (p = 0.01) and female offspring weight at postnatal day 70 (p = 0.03). CONCLUSIONS Overall, we show that prenatal acamprosate exposure was not associated with poor maternal or neonatal health outcomes or impaired neurodevelopment and behaviour. However, acamprosate's effects on short-term memory remain uncertain. We present preliminary evidence to suggest acamprosate displayed some neuroprotective effects against damage caused by in utero alcohol exposure.
Collapse
Affiliation(s)
- Ebony Quintrell
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin Wyrwoll
- Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia.
| |
Collapse
|
8
|
Ademar K, Adermark L, Söderpalm B, Ericson M. Sodium acamprosate and calcium exert additive effects on nucleus accumbens dopamine in the rat. Addict Biol 2022; 27:e13224. [PMID: 36001425 PMCID: PMC9541434 DOI: 10.1111/adb.13224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Acamprosate (Campral® – calcium‐bis[N‐acetylhomotaurinate]) is one of few available pharmacotherapies for individuals suffering from alcohol use disorder. Previously, we suggested that acamprosate reduces ethanol intake by increasing dopamine in the nucleus accumbens (nAc), thereby partly substituting for alcohol's dopamine releasing effect. An experimental study suggested the calcium moiety of acamprosate to be the active component of the drug and to mediate the relapse preventing effect. The aim of the present study was to, by means of reversed in vivo microdialysis, elucidate if the dopamine elevating properties of acamprosate are mediated by N‐acetylhomotaurine or by the calcium moiety. Male rats were equipped with a microdialysis probe in the nAc and received acute local treatment with regular acamprosate (CaAcamp 0.5 mM), calcium chloride (CaCl2 0.5 mM), sodium acamprosate (NaAcamp 0.5–1 mM), the glycine receptor (GlyR) antagonist strychnine (Stry 20 μM), or vehicle. In all experiments, extracellular levels of dopamine and taurine were examined. We found that local perfusion with both CaAcamp and CaCl2 increased dopamine levels in a GlyR‐dependent manner. NaAcamp did not influence dopamine levels, but concomitant administration with CaCl2 resulted in an additive dopamine output compared to the drugs administrated alone. We also found CaAcamp and the combination of CaCl2 and NaAcamp to increase accumbal taurine levels, suggesting that CaAcamp may act indirectly on GlyRs via taurine release. The present results indicate that both N‐acetylhomotaurine and the calcium moiety of acamprosate have dopamine elevating properties within the nAc and that, in this respect, these substances are beneficial in combination.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Beroendekliniken Sahlgrenska University Hospital Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
9
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
10
|
Olsson Y, Höifödt Lidö H, Danielsson K, Ericson M, Söderpalm B. Effects of systemic glycine on accumbal glycine and dopamine levels and ethanol intake in male Wistar rats. J Neural Transm (Vienna) 2021; 128:83-94. [PMID: 33351169 PMCID: PMC7815572 DOI: 10.1007/s00702-020-02284-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Approved medications for alcohol use disorder (AUD) display modest effect sizes. Pharmacotherapy aimed at the mechanism(s) by which ethanol activates the dopamine reward pathway may offer improved outcomes. Basal and ethanol-induced accumbal dopamine release in the rat involve glycine receptors (GlyR) in the nucleus accumbens (nAc). Glycine transporter 1 (GlyT-1) inhibitors, which raise extracellular glycine levels, have repeatedly been shown to decrease ethanol intake in the rat. To further explore the rational for elevating glycine levels in the treatment of AUD, this study examined accumbal extracellular glycine and dopamine levels and voluntary ethanol intake and preference in the rat, after systemic treatment with glycine. The effects of three different doses of glycine i.p. on accumbal glycine and dopamine levels were examined using in vivo microdialysis in Wistar rats. In addition, the effects of the intermediate dose of glycine on voluntary ethanol intake and preference were examined in a limited access two-bottle ethanol/water model in the rat. Systemic glycine treatment increased accumbal glycine levels in a dose-related manner, whereas accumbal dopamine levels were elevated in a subpopulation of animals, defined as dopamine responders. Ethanol intake and preference decreased after systemic glycine treatment. These results give further support to the concept of elevating central glycine levels to reduce ethanol intake and indicate that targeting the glycinergic system may represent a pharmacologic treatment principle for AUD.
Collapse
Affiliation(s)
- Yasmin Olsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, Sweden.
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Helga Höifödt Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, PO Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020; 21:823-839. [PMID: 32103695 PMCID: PMC7239727 DOI: 10.1080/14656566.2020.1732349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment. They also review the mechanisms of action of opioids and alcohol within the brain reward circuitry and discuss potential combined mechanisms of action and resulting neuroadaptations. Pharmacotherapies that aim to treat AUD or OUD that may be beneficial in the treatment of co-use are also highlighted. Preclinical models assessing alcohol and opioid co-use remain sparse. Lasting neuroadaptations in brain reward circuits caused by co-use of alcohol and opioids remains largely understudied. In order to fully understand the neurobiological underpinnings of alcohol and opioid co-use and develop efficacious pharmacotherapies, the preclinical field must expand its current experimental paradigms of 'single drug' use to encompass polysubstance use. Such studies will provide insights on the neural alterations induced by opioid and alcohol co-use, and may help develop novel pharmacotherapies for individuals with co-occurring alcohol and opioid use disorders.
Collapse
Affiliation(s)
- Lauren E. Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | | | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|