1
|
Lodetti G, Baldin SL, de Farias ACS, de Pieri Pickler K, Teixeira AG, Dondossola ER, Bernardo HT, Maximino C, Rico EP. Repeated exposure to ethanol alters memory acquisition and neurotransmission parameters in zebrafish brain. Pharmacol Biochem Behav 2025; 246:173915. [PMID: 39586362 DOI: 10.1016/j.pbb.2024.173915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Alcohol is widely consumed worldwide and its abuse can cause cognitive dysfunction, affecting memory and learning due to several neurophysiological changes. An imbalance in several neurotransmitters, including the cholinergic and glutamatergic systems, have been implicated in these effects. Zebrafish are sensitive to alcohol, respond to reward stimuli, and tolerate and exhibit withdrawal behaviors. Therefore, we investigated the effects of repetitive exposure to ethanol (REE) and the NMDA receptor antagonist dizocilpine (MK-801) on memory acquisition and glutamatergic and cholinergic neurotransmission. Memory was assessed using the inhibitory avoidance and object recognition tasks. Brain glutamate levels and the activity of Na+-dependent transporters were evaluated as indexes of glutamatergic activity, while acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), enzyme activity were evaluated as indexes of cholinergic activity. Behavioral assessments showed that REE impaired aversive and spatial memory, an effect that MK-801 mimicked. Glutamate levels, but not transporter activity, were significantly lower in the REE group; similarly, REE increased the activity of AChE, but not ChAT, activity. These findings suggest that intermittent exposure to ethanol leads to impairments in zebrafish memory consolidation, and that these effects could be associated with alterations in parameters related to neurotransmission systems mediated by glutamate and acetylcholine. These results provide a better understanding of the neurophysiological and behavioral changes caused by repetitive alcohol use.
Collapse
Affiliation(s)
- Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Carolina Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Caio Maximino
- Laboratory of Neurosciences and Behavior, Institute of Health and Biological Studies, Federal University of South and Southeast of Pará, Marabá, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Gamba BFG, Pickler KDP, Lodetti G, Farias ACSD, Teixeira AG, Bernardo HT, Dondossola ER, Cararo JH, Luchiari AC, Rosemberg DB, Rico EP. Embryonic alcohol exposure alters cholinergic neurotransmission and memory in adult zebrafish. Behav Brain Res 2024; 474:115176. [PMID: 39098400 DOI: 10.1016/j.bbr.2024.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.
Collapse
Affiliation(s)
- Bárbara Fiorentin Giordani Gamba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Denis Broock Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Zhang R, Wang R, Chang J, Sheng GD, Yin D. Neurotoxicity of tetramethylammonium ion on larval and juvenile zebrafish: Effects on neurobehaviors and multiple biomarkers. J Environ Sci (China) 2024; 143:138-147. [PMID: 38644012 DOI: 10.1016/j.jes.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 04/23/2024]
Abstract
Tetramethylammonium hydroxide (TMAH) is an important compound that utilized and released by the rapidly expanding semiconductor industry, which could hardly be removed by the conventional wastewater treatment techniques. As a cholinergic agonist, the tetramethylammonium ion (TMA+) has been reported to induce toxicity to muscular and respiratory systems of mammals and human, however the toxicity on aquatic biota remains poorly known. We investigated the neurotoxic effects of TMA+ exposure on zebrafish, based on neurobehavior tests and a series of biomarkers. Significant inhibitions on the swimming distance of zebrafish larvae were observed when the exposure level exceeded 50 mg/L, and significant alterations on swimming path angles (straight and deflective movements) occurred even at 10 mg/L. The tested neurobehavioral endpoints of zebrafish larvae were significantly positively correlated with reactive oxygen species (ROS) and malondialdehyde (MDA), significantly negatively related with the activities of antioxidant enzymes, but not significantly correlated with the level of acetylcholinesterase (AChE). Such relationship indicates that the observed neurotoxic effects on swimming behavior of zebrafish larvae is mainly driven by oxidative stress, rather than the alterations of neurotransmitter. At the highest exposure concentration (200 mg/L), TMA+ evoked more severe toxicity on zebrafish juveniles, showing significantly stronger elevation on the MDA activity, and greater inhibitions on the activities of antioxidant enzymes and AChE, suggesting juveniles were more susceptible to TMA+ exposure than larval zebrafish.
Collapse
Affiliation(s)
- Ruixin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jiajun Chang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - G Daniel Sheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Raghul Kannan S, Latha Laxmi IP, Ahmad SF, Tamizhselvi R. Embryonic ethanol exposure induces oxidative stress and inflammation in zebrafish model: A dose-dependent study. Toxicology 2024; 506:153876. [PMID: 38945197 DOI: 10.1016/j.tox.2024.153876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Alcohol, or ethanol, is a major contributor to detrimental diseases and comorbidities worldwide. Alcohol use during pregnancy intervenes the developing embryos leading to morphological changes, neurocognitive defects, and behavioral changes known as fetal alcohol spectrum disorder (FASD). Zebrafish have been used as a model to study FASD; however, the mechanism and the impact of ethanol on oxidative stress and inflammation in the zebrafish FASD model remain unexplored. Hence, we exposed zebrafish embryos to different concentrations of ethanol (0 %, 0.5 %, 1.0 %, 1.25 %, and 1.5 % ethanol (v/v)) at 4-96 hours post-fertilization (hpf) to study and characterize the ethanol concentration for the FASD model to induce oxidative stress and inflammation. Here, we studied the survival rate and developmental toxicity parameters at different time points and measured oxidative stress, reactive oxygen species (ROS) generation, apoptosis, and pro-inflammatory gene expression in zebrafish larvae. Our findings indicate that ethanol causes various developmental abnormalities, including decreased survival rate, spontaneous tail coiling, hatching rate, heart rate, and body length, associated with increased malformation. Further, ethanol exposure induced oxidative stress by increasing lipid peroxidation and nitric oxide production and decreasing glutathione levels. Subsequently, ethanol increased ROS generation, apoptosis, and pro-inflammatory gene (TNF-α and IL-1β) expression in ethanol exposed larvae. 1.25 % and 1.5 % ethanol had significant impacts on zebrafish larvae in all studied parameters. However, 1.5 % ethanol showed decreased survival rate and increased malformations. Overall, 1.25 % ethanol is the ideal concentration to study the oxidative stress and inflammation in the zebrafish FASD model.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Ding P, Xiang C, Li X, Chen H, Shi X, Li X, Huang C, Yu Y, Qi J, Li AJ, Zhang L, Hu G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163480. [PMID: 37068667 DOI: 10.1016/j.scitotenv.2023.163480] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants and cause neurotoxicity in various organisms. However, previous studies that analyzed the effects of MPs mainly focused on virgin polystyrene (V-PS) as representative models of MPs, and the mechanism underlying the neurotoxicity of photoaged polystyrene (P-PS) remains largely unknown. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0.1-100 μg/L) of V-PS and P-PS(10 μm). The results indicated that UV radiation accelerated the aging process and changed physical and chemical properties of PS. Whereas exposure to both V-PS and P-PS at low concentrations (100 μg/L) significantly reduced the locomotor behavior of zebrafish larvae, P-PS caused more severe neurotoxicity compared to V-PS. The activity of antioxidant enzymes (SOD, CAT, and GST) and MDA content were significantly altered in zebrafish exposed to 10-100 μg/L of P-PS. Similarly, exposure to P-PS significantly increased neurotransmitter (5-HT, GABA, DA, and ACh) levels and activity of AChE, ChAT, and ChE. Star plots based on integrated biomarker response (IBR) values showed more incline toward neurotransmitter biomarkers in response to increasing P-PS concentration, and the behavioral parameters negatively correlated with the neurotransmitter biomarkers. Further investigations revealed that the expression of neurotransmission- (e.g., ache, drd3, 5th2c, and gat1) and oxidative stress- (e.g., cat1, sod1, gpx1a, and gstrl) related genes was significantly affected by PS in larval zebrafish. Thus, this study provides new insights on the potential risks of MPs into the environment.
Collapse
Affiliation(s)
- Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
6
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Elizalde-Velázquez GA, Orozco-Hernández JM, Heredia-García G, Rosales-Pérez KE, Galar-Martínez M. Multi-biomarker approach to evaluate the neurotoxic effects of environmentally relevant concentrations of phenytoin on adult zebrafish Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155359. [PMID: 35460791 DOI: 10.1016/j.scitotenv.2022.155359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
7
|
Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021; 8:ENEURO.0027-21.2021. [PMID: 33952614 PMCID: PMC8174008 DOI: 10.1523/eneuro.0027-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptomatic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia. Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfactory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic advantages besides genetic and physiologic similarities with mammalian, including the brain structure and functions. Besides, its external embryonic development, high availability of eggs, and fast development allows easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model can be advantageous to investigate the neurologic features of COVID-19.
Collapse
Affiliation(s)
- Karla C M Costa
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900,
| | - Tamires A V Brigante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Gabriel G Fernandes
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Davi S Scomparin
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Franciele F Scarante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Danielle P de Oliveira
- EcoHumanTox Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo, Brazil 14049-900
| | - Alline C Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| |
Collapse
|
8
|
Nahar M, Jat D. Long-Term Exposure of Alcohol Induced Behavioral Impairments and Oxidative Stress in the Brain Mitochondria and Synaptosomes of Adult Zebrafish. Zebrafish 2021; 18:110-124. [PMID: 33728993 DOI: 10.1089/zeb.2020.1913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet ad libitum (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na+/K+ ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug "alcohol" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
9
|
Agostini JF, Santo GD, Baldin SL, Bernardo HT, de Farias ACS, Rico EP, Wanderley AG. Gallic Acid Reverses Neurochemical Changes Induced by Prolonged Ethanol Exposure in the Zebrafish Brain. Neuroscience 2020; 455:251-262. [PMID: 33285238 DOI: 10.1016/j.neuroscience.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023]
Abstract
Gallic acid (GA) is a polyphenolic compound that has attracted significant interest due to its antioxidant action through free radical elimination and metal chelation. Ethanol is a highly soluble psychoactive substance, and its toxicity is associated with oxidative stress. In this context, the purpose of the present study was to investigate the effect of GA on neurochemical changes in zebrafish brains exposed to ethanol. GA was first analyzed in isolation by treating the animals at concentrations of 5, 10, and 20 mg/L for 24 h and 48 h. The results revealed that the group exposed to 20 mg/L over a 24/48 h period exhibited increases in thiobarbituric acid reactive substance (TBA-RS) levels and 2',7'-dichlorofluorescein (DCFH) oxidation, demonstrating a pro-oxidant profile. Moreover, decrease in acetylcholinesterase (AChE) enzyme activity was observed. To investigate the effects of GA after ethanol exposure, the animals were divided into four groups: control; those exposed to 0.5% ethanol for 7 days; those exposed to 0.5% ethanol for 7 days and treated with GA at 5 and 10 mg/L on day 8. Treatment with GA at 5 and 10 mg/L reversed impairment of choline acetyltransferase activity and the damage to TBA-RS levels, DCFH oxidation, and superoxide dismutase activity induced by ethanol. Results of the present study suggest that GA treatment (20 mg/L) appeared to disrupt oxidative parameters in the zebrafish brain. GA treatment at 5 and 10 mg/L reversed alterations to the cholinergic system induced by prolonged exposure to ethanol in the zebrafish brain, probably through an antioxidant mechanism.
Collapse
Affiliation(s)
- Jotele Fontana Agostini
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Glaucia Dal Santo
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
10
|
Ceftriaxone Attenuated Anxiety-Like Behavior and Enhanced Brain Glutamate Transport in Zebrafish Subjected to Alcohol Withdrawal. Neurochem Res 2020; 45:1526-1535. [PMID: 32185643 DOI: 10.1007/s11064-020-03008-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Chronic and/or excessive consumption of alcohol followed by reduced consumption or abstention can result in Alcohol Withdrawal Syndrome. A number of behavioral changes and neurological damage result from ethanol (EtOH) withdrawal. Ceftriaxone (Cef) modulates the activity of excitatory amino acid transporters by increasing their gene expression. Zebrafish are commonly used to study alcohol exposure. The aim of this study was to evaluate the influence of Cef (100 µM) on behavior patterns, glutamate transport activity, and oxidative stress in zebrafish brains subjected to EtOH (0.3% v/v) withdrawal. The exploratory tests using Novel tank showed that EtOH withdrawal promoted a decrease in the time spent and number of entries of in the bottom displaying an anxiety-like behavior. In contrast, treatment with Cef resulted in recovery of exploratory behavioral patterns. Ceftriaxone treatment resulted in increased glutamate uptake in zebrafish subjected to EtOH withdrawal. Furthermore, EtOH withdrawal increased reactive species, as determined using thiobarbituric acid and dichlorodihydrofluorescein assays. Treatment with Cef reversed these effects. Ceftriaxone promoted a significant reduction in brain sulfhydryl content in zebrafish subjected to EtOH withdrawal. Therefore, Cef treatment in conjunction with EtOH withdrawal induced anxiolytic-like effects due to possible neuromodulation of glutamatergic transporters, potentially through mitigation of oxidative stress.
Collapse
|