1
|
Kouba BR, Rodrigues ALS. Neuroplasticity-related effects of vitamin D relevant to its neuroprotective effects: A narrative review. Pharmacol Biochem Behav 2024; 245:173899. [PMID: 39447683 DOI: 10.1016/j.pbb.2024.173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pathophysiology of a wide range of central nervous system (CNS) disorders, such as neurodegenerative and psychiatric diseases, has been associated with impairment of neurogenic and synaptogenic processes. Therefore, pharmacological and/or nutritional strategies based on the stimulation and/or restoration of these processes may have beneficial effects against diseases in which these processes are impaired. In this context, vitamin D has emerged as a promising neuroprotective compound. Due to its pleiotropic properties, it can interact with multiple molecular targets and thereby affect different cell types, including neurons and glial cells. This neurosteroid contributes to CNS homeostasis by non-genomic and genomic mechanisms through its interaction with vitamin D receptors (VDRs). Among several properties of this vitamin, its role in neuronal proliferation and differentiation as well as in synaptic plasticity has received attention. Considering this background, this narrative review aims to highlight the neuroplasticity-related mechanisms of vitamin D that may be associated with its neuroprotective effects.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
2
|
Roushdy MMS, Labib JMW, Abdelrahim DS, Mohamed DAW, Abdelmalak MFL. Amitriptyline and cholecalciferol amend hippocampal histological structure and myelination during stress in Wistar rats via regulating miR200/BMP4/Olig-2 signaling. Cell Biol Int 2024; 48:1326-1342. [PMID: 38890788 DOI: 10.1002/cbin.12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Chronic stress is a universal condition commonly associated with many psychiatric diseases. An extensive body of evidence discussed hippocampal affection upon chronic stress exposure, however, the underlying molecular pathways still need to be identified. We investigated the impact of chronic stress on miR200/BMP/Olig-2 signaling and hippocampal myelination. We also compared the effects of chronic administration of amitriptyline and cholecalciferol on chronically stressed hippocampi. Both amitriptyline and cholecalciferol significantly decreased serum cortisol levels, reduced immobility time in the forced swim test, increased the number of crossed squares in open field test, decreased the hippocampal expression of bone morphogenetic protein 4 (BMP4) and its messenger RNA (mRNA) levels, reduced miR200 expression as compared to untreated chronically stressed rats. Also, both drugs amended the hippocampal neuronal damage, enhanced the surviving cell count, and increased the pyramidal layer thickness of Cornu Ammonis subregion 1 (CA1) and granule cell layer of the dentate gyrus. Cholecalciferol was more effective in increasing the area percentage of myelin basic protein (MBP) and Olig-2 positive cells count in hippocampi of chronic stress-exposed rats than amitriptyline, thus enhancing myelination. We also found a negative correlation between the expression of BMP4, its mRNA, miR200, and the immunoexpression of MBP and Olig-2 proteins. This work underscores the amelioration of the stress-induced behavioral changes, inhibition of miR200/BMP4 signaling, and enhancement of hippocampal myelination following chronic administration of either amitriptyline or cholecalciferol, though cholecalciferol seemed more effective in brain remyelination.
Collapse
Affiliation(s)
- Marian Maher Salib Roushdy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Jolly M W Labib
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Dalia Abdel Wahab Mohamed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marian Farid Louka Abdelmalak
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
3
|
Kouba BR, Altê GA, Rodrigues ALS. Putative Pharmacological Depression and Anxiety-Related Targets of Calcitriol Explored by Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:893. [PMID: 39065743 PMCID: PMC11280388 DOI: 10.3390/ph17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Depression and anxiety disorders, prevalent neuropsychiatric conditions that frequently coexist, limit psychosocial functioning and, consequently, the individual's quality of life. Since the pharmacological treatment of these disorders has several limitations, the search for effective and secure antidepressant and anxiolytic compounds is welcome. Vitamin D has been shown to exhibit neuroprotective, antidepressant, and anxiolytic properties. Therefore, this study aimed to explore new molecular targets of calcitriol, the active form of vitamin D, through integrated bioinformatic analysis. Calcitriol targets were predicted in SwissTargetPrediction server (2019 version). The disease targets were collected by the GeneCards database searching the keywords "depression" and "anxiety". Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the intersections of targets. Network analyses were carried out using GeneMania server (2023 version) and Cytoscape (V. 3.9.1.) software. Molecular docking predicted the main targets of the network and Ligplot predicted the main intermolecular interactions. Our study showed that calcitriol may interact with multiple targets. The main targets found are the vitamin D receptor (VDR), histamine H3 receptor (H3R), endocannabinoid receptors 1 and 2 (CB1 and CB2), nuclear receptor NR1H3, patched-1 (PTCH1) protein, opioid receptor NOP, and phosphodiesterase enzymes PDE3A and PDE5A. Considering the role of these targets in the pathophysiology of depression and anxiety, our findings suggest novel putative mechanisms of action of vitamin D as well as new promising molecular targets whose role in these disorders deserves further investigation.
Collapse
Affiliation(s)
| | | | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88037-000, SC, Brazil; (B.R.K.); (G.A.A.)
| |
Collapse
|
4
|
Renteria KM, Constantine E, Teoh CM, Cooper A, Lozano N, Bauer S, Koh GY. Combination of vitamin D 3 and fructooligosaccharides upregulates colonic vitamin D receptor in C57BL/6J mice and affects anxiety-related behavior in a sex-specific manner. Nutr Res 2024; 125:16-26. [PMID: 38432179 DOI: 10.1016/j.nutres.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Depression and anxiety disorders are among the most common mental health disorders that affect US adults today, frequently related to vitamin D (VD) insufficiency. Along with VD, growing evidence suggests gut microbiota likely play a role in neuropsychiatric disorders. Here, we investigated if modulation of gut microbiota would disrupt host VD status and promote behaviors related to depression and anxiety in adult mice. Six-week-old male and female C57BL/6J mice (n = 10/mice/group) were randomly assigned to receive (1) control diet (CTR), control diet treated with antibiotics (AB), control diet with total 5000 IU of VD (VD), VD treated with antibiotics (VD + AB), VD supplemented with 5% w/w fructooligosaccharides (FOS; VF), and VF diet treated with antibiotics (VF + AB), respectively, for 8 weeks. Our study demonstrated that VD status was not affected by antibiotic regimen. VD alone ameliorates anxiety-related behavior in female mice, and that combination with FOS (i.e., VF) did not further improve the outcome. Male mice, in contrast, exhibit greater anxiety with VF, but not VD, when compared with CTR mice. Colonic VD receptor was elevated in VF-treated mice in both sexes, compared with CTR, which was positively correlated to colonic TPH1, a rate-limiting enzyme for serotonin synthesis. Taken together, our data indicate that the effect of VF on anxiety-related behavior is sex-specific, which may partially be attributed to the activation of colonic VD signaling and subsequent serotonin synthesis. The synergistic or additive effect of VD and FOS on mood disorders remained to be investigated.
Collapse
Affiliation(s)
- Karisa M Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Ethan Constantine
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Chin May Teoh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Analynn Cooper
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Nissi Lozano
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Spenser Bauer
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
5
|
Renteria K, Nguyen H, Koh GY. The role of vitamin D in depression and anxiety disorders: a review of the literature. Nutr Neurosci 2024; 27:262-270. [PMID: 36877601 DOI: 10.1080/1028415x.2023.2186318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.
Collapse
Affiliation(s)
- Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Hien Nguyen
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| |
Collapse
|
6
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
7
|
Ceolin G, Antunes LDC, Moretti M, Rieger DK, Moreira JD. Vitamin D and depression in older adults: lessons learned from observational and clinical studies. Nutr Res Rev 2023; 36:259-280. [PMID: 35022097 DOI: 10.1017/s0954422422000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Depression is a mental disorder triggered by the interaction of social, psychological and biological factors that have an important impact on an individual's life. Despite being a well-studied disease with several established forms of treatment, its prevalence is increasing, especially among older adults. New forms of treatment and prevention are encouraged, and some researchers have been discussing the effects of vitamin D (VitD) on depression; however, the exact mechanism by which VitD exerts its effects is not yet conclusive. In this study, we aimed to discuss the possible mechanisms underlying the association between VitD and depression in older adults. Therefore, we conducted a systematic search of databases for indexed articles published until 30 April 2021. The primary focus was on both observational studies documenting the association between VitD and depression/depressive symptoms, and clinical trials documenting the effects of VitD supplementation on depression/depressive symptoms, especially in older adults. Based on pre-clinical, clinical and observational studies, it is suggested that the maintenance of adequate VitD concentrations is an important issue, especially in older adults, which are a risk population for both VitD deficiency and depression. Nevertheless, it is necessary to carry out more studies using longitudinal approaches in low- and middle-income countries to develop a strong source of evidence to formulate guidelines and interventions.
Collapse
Affiliation(s)
- Gilciane Ceolin
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luciana da Conceição Antunes
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Morgana Moretti
- Postgraduate Program in Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Débora Kurrle Rieger
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia Dubois Moreira
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
8
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Supplementation with Vitamin D 3 Protects against Mitochondrial Dysfunction and Loss of BDNF-Mediated Akt Activity in the Hippocampus during Long-Term Dexamethasone Treatment in Rats. Int J Mol Sci 2023; 24:13941. [PMID: 37762245 PMCID: PMC10530487 DOI: 10.3390/ijms241813941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Dexamethasone (DEXA) is a commonly used steroid drug with immunosuppressive and analgesic properties. Unfortunately, long-term exposure to DEXA severely impairs brain function. This study aimed to investigate the effects of vitamin D3 supplementation during chronic DEXA treatment on neurogenesis, mitochondrial energy metabolism, protein levels involved in the BDNF-mediated Akt activity, and specific receptors in the hippocampus. We found reduced serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), downregulated proBDNF and pAkt, dysregulated glucocorticosteroid and mineralocorticoid receptors, impaired mitochondrial biogenesis, and dysfunctional mitochondria energy metabolism in the DEXA-treated group. In contrast, supplementation with vitamin D3 restored the 25(OH)D3 concentration to a value close to that of the control group. There was an elevation in neurotrophic factor protein level, along with augmented activity of pAkt and increased citrate synthase activity in the hippocampus after vitamin D3 administration in long-term DEXA-treated rats. Our findings demonstrate that vitamin D3 supplementation plays a protective role in the hippocampus and partially mitigates the deleterious effects of long-term DEXA administration. The association between serum 25(OH)D3 concentration and BDNF level in the hippocampus indicates the importance of applying vitamin D3 supplementation to prevent and treat pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (D.K.-L.); (M.J.K.); (D.M.)
| |
Collapse
|
9
|
Kouba BR, Camargo A, Rodrigues ALS. Neuroinflammation in Alzheimer's disease: potential beneficial effects of vitamin D. Metab Brain Dis 2023; 38:819-829. [PMID: 36862275 DOI: 10.1007/s11011-023-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. In recent years, several studies have robustly shown that neuroinflammation plays a crucial role in the pathophysiology of this disease. The co-localization of amyloid-β plaques near activated glial cells and the increased levels of inflammatory cytokines in AD patients indicate the involvement of the neuroinflammatory process in AD progression. Considering that pharmacological treatment remains a challenge for the management of this disease, compounds with anti-inflammatory and antioxidant properties are promising therapeutic strategies. In this context, vitamin D has gained attention in the last few years due to its neuroprotective property and the high prevalence of vitamin D deficiency in the population. Herein, in this narrative review we present the possible contribution of the antioxidant and anti-inflammatory properties of vitamin D for its neuroprotective effects, and the clinical and preclinical data dealing with the effects of vitamin D in AD, focusing mainly on the neuroinflammatory process.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
10
|
Baghaei Naeini F, Hassanpour S, Asghari A. Resveratrol exerts anxiolytic-like effects through anti-inflammatory and antioxidant activities in rats exposed to chronic social isolation. Behav Brain Res 2023; 438:114201. [PMID: 36334782 DOI: 10.1016/j.bbr.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Emerging evidence has confirmed resveratrol's (RES) antioxidant, anti-inflammatory, and antidepressant effects. The beneficial effects of RES were confirmed for several emotional and cognitive deficits. This research aimed to assess the impacts of RES on behavior and hippocampal levels of anti-inflammatory and pro-inflammatory factors in rats exposed to chronic social isolation (SI) stress, which is known to induce mental disorders such as depressive-like behavior. The animals were treated by RES (20, 40, or 80 mg/kg/intraperitoneally) for 28 days following a 28-day exposure to stress. Behavioral tests, including the forced swim test (FST), open-field test (OFT), tail suspension test (TST), and sucrose preference test (SPT), assessed depressive symptoms. Finally, the animals were sacrificed, and molecular studies (qPCR and ELISA) were performed. Exposure of animals to SI dramatically increased the immobility of animals in TST and FST, enhanced the time spent in the open-field peripheral zone of the OFT, and reduced the sucrose preference rate. In addition, SI increased serum levels of corticosterone and hippocampal content of MDA, whereas it reduced hippocampal SOD and CAT activities. Moreover, SI upregulated the expression of IL-10, IL-18, and IL-1β and downregulated the expression of TGF-β in the hippocampus. RES treatment (40 & 80 mg/kg) significantly improved the behavioral alterations through the modulation of neuroinflammation and oxidative stress. The 20 mg/kg RES dose was inefficient for treating SI-induced depressive-like behavior. These results indicated that RES attenuated depressive-like behavior in prolonged stressed animals. These properties might be associated with RES-mediated improvements in serum corticosterone and hippocampal inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Farinaz Baghaei Naeini
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Kouba BR, Torrá ACNC, Camargo A, Rodrigues ALS. The antidepressant-like effect elicited by vitamin D 3 is associated with BDNF/TrkB-related synaptic protein synthesis. Metab Brain Dis 2023; 38:601-611. [PMID: 36350480 DOI: 10.1007/s11011-022-01115-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Vitamin D3 (cholecalciferol) has been shown to exert antidepressant-like responses, but the role BDNF/TrkB-related synaptic plasticity in this effect remains to be established. Thus, this study investigated the time-course antidepressant-like response of vitamin D3 in female and male mice and the possible role of BDNF/TrkB signaling in this response. The repeated (7 and 21 days), but not acute (60 min), administration of vitamin D3 (2.5 μg/kg, p.o.) exerted an antidepressant-like effect in female and male mice subjected to the tail suspension test, without altering the basal locomotor activity in the open-field test. Notably, vitamin D3 caused a similar time-dependent antidepressant-like effect in male and female mice, suggesting that this behavioral response in the tail suspension test might not be affected by sex differences. Vitamin D3 administration for 21 days, but not for 7 days or 1 h, augmented BDNF levels in the hippocampus and prefrontal cortex of mice. No effects on phospho-CREB/CREB levels were detected in the hippocampus and prefrontal cortex after chronic vitamin D3 administration. Additionally, vitamin D3 increased TrkB, GluA1, and PSD-95 levels in the prefrontal cortex, but not in the hippocampus. Furthermore, an upregulation of synapsin level was observed in both brain regions after vitamin D3 administration. These findings reinforce and extend the notion that vitamin D3 is effective to produce antidepressant-like responses in male and female mice and provide novel evidence that this effect could be associated with BDNF/TrkB-related synaptic protein synthesis. Finally, vitamin D3 could be a feasible nutritional strategy for the management of depression.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Clara N C Torrá
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
12
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
NLRP3 Inflammasome: From Pathophysiology to Therapeutic Target in Major Depressive Disorder. Int J Mol Sci 2022; 24:ijms24010133. [PMID: 36613574 PMCID: PMC9820112 DOI: 10.3390/ijms24010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, whose pathophysiology has been linked to the neuroinflammatory process. The increased activity of the Nod-like receptor pyrin containing protein 3 (NLRP3) inflammasome, an intracellular multiprotein complex, is intrinsically implicated in neuroinflammation by promoting the maturation and release of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Interestingly, individuals suffering from MDD have higher expression of NLRP3 inflammasome components and proinflammatory cytokines when compared to healthy individuals. In part, intense activation of the inflammasome may be related to autophagic impairment. Noteworthy, some conventional antidepressants induce autophagy, resulting in less activation of the NLRP3 inflammasome. In addition, the fast-acting antidepressant ketamine, some bioactive compounds and physical exercise have also been shown to have anti-inflammatory properties via inflammasome inhibition. Therefore, it is suggested that modulation of inflammasome-driven pathways may have an antidepressant effect. Here, we review the role of the NLRP3 inflammasome in the pathogenesis of MDD, highlighting that pathways related to its priming and activation are potential therapeutic targets for the treatment of MDD.
Collapse
|
14
|
Cui X, Eyles DW. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022; 14:nu14204353. [PMID: 36297037 PMCID: PMC9610817 DOI: 10.3390/nu14204353] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Twenty of the last one hundred years of vitamin D research have involved investigations of the brain as a target organ for this hormone. Our group was one of the first to investigate brain outcomes resulting from primarily restricting dietary vitamin D during brain development. With the advent of new molecular and neurochemical techniques in neuroscience, there has been increasing interest in the potential neuroprotective actions of vitamin D in response to a variety of adverse exposures and how this hormone could affect brain development and function. Rather than provide an exhaustive summary of this data and a listing of neurological or psychiatric conditions that vitamin D deficiency has been associated with, here, we provide an update on the actions of this vitamin in the brain and cellular processes vitamin D may be targeting in psychiatry and neurology.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
| | - Darryl W. Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
- Correspondence:
| |
Collapse
|
15
|
Pan SM, Zhou YF, Zuo N, Jiao RQ, Kong LD, Pan Y. Fluoxetine increases astrocytic glucose uptake and glycolysis in corticosterone-induced depression through restricting GR-TXNIP-GLUT1 Pathway. Front Pharmacol 2022; 13:872375. [PMID: 36105196 PMCID: PMC9465171 DOI: 10.3389/fphar.2022.872375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.
Collapse
Affiliation(s)
- Shu-Man Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi-Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Na Zuo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| |
Collapse
|
16
|
Kouba BR, Camargo A, Gil-Mohapel J, Rodrigues ALS. Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety. Int J Mol Sci 2022; 23:ijms23137077. [PMID: 35806075 PMCID: PMC9266859 DOI: 10.3390/ijms23137077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. Indeed, in the last few years, vitamin D has gained attention for its many functions that go beyond its effects on calcium–phosphorus metabolism. Particularly, antioxidant, anti-inflammatory, pro-neurogenic, and neuromodulatory properties seem to contribute to its antidepressant and anxiolytic effects. Therefore, in this review, we highlight the main mechanisms that may underlie the potential antidepressant and anxiolytic effects of vitamin D. In addition, we discuss preclinical and clinical studies that support the therapeutic potential of this vitamin for the management of these disorders.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Anderson Camargo
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| |
Collapse
|
17
|
Neis VB, Werle I, Moretti M, Rosa PB, Camargo A, de O Dalsenter Y, Platt N, Rosado AF, Engel WD, de Almeida GRL, Selhorst I, Dafre AL, Rodrigues ALS. Involvement of serotonergic neurotransmission in the antidepressant-like effect elicited by cholecalciferol in the chronic unpredictable stress model in mice. Metab Brain Dis 2022; 37:1597-1608. [PMID: 35435610 DOI: 10.1007/s11011-022-00979-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Cholecalciferol deficiency has been associated with stress-related psychiatric disorders, particularly depression. Therefore, the present study investigated the antidepressant-like effect of cholecalciferol in female mice and the possible role of the serotonergic system in this response. The ability of cholecalciferol to elicit an antidepressant-like effect and to modulate serotonin levels in the hippocampus and prefrontal cortex of mice subjected to chronic unpredictable stress (CUS) was also investigated. The administration of cholecalciferol (2.5, 7.5, and 25 µg/kg, p.o.) for 7 days, similar to fluoxetine (10 mg/kg, p.o., serotonin reuptake inhibitor), reduced the immobility time in the tail suspension test, without altering the locomotor performance in the open-field test. Moreover, the administration of p-chlorophenylalanine methyl ester (PCPA - 100 mg/kg, i.p., for 4 days, a selective inhibitor of tryptophan hydroxylase, involved in the serotonin synthesis) abolished the antidepressant-like effect of cholecalciferol and fluoxetine in the tail suspension test, demonstrating the involvement of serotonergic system. Additionally, CUS protocol (21 days) induced depressive-like behavior in the tail suspension test and decreased serotonin levels in the prefrontal cortex and hippocampus of mice. Conversely, the administration of cholecalciferol and fluoxetine in the last 7 days of CUS protocol completely abolished the stress-induced depressive-like phenotype. Cholecalciferol was also effective to abrogate CUS-induced reduction on serotonin levels in the prefrontal cortex, but not in the hippocampus. Our results indicate that cholecalciferol has an antidepressant-like effect in mice by modulating the serotonergic system and support the assumption that cholecalciferol may have beneficial effects for the management of depression.
Collapse
Affiliation(s)
- Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Isabel Werle
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Yasmim de O Dalsenter
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Nicolle Platt
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Axel F Rosado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - William D Engel
- Educational Society of Santa Catarina - Unisociesc, Jaraguá do Sul, Santa Catarina, 89251-970, Brazil
| | - Gudrian Ricardo L de Almeida
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
18
|
Wu J, Li J, Gaurav C, Muhammad U, Chen Y, Li X, Chen J, Wang Z. CUMS and dexamethasone induce depression-like phenotypes in mice by differentially altering gut microbiota and triggering macroglia activation. Gen Psychiatr 2022; 34:e100529. [PMID: 34970638 PMCID: PMC8671983 DOI: 10.1136/gpsych-2021-100529] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although the link between gut microbiota and depression has been suggested, changes of gut microbiota vary largely among individuals with depression. Aims Explore the heterogeneity of microbiota–gut–brain axis and new pathogenic characteristics in murine models of depression. Methods Adolescent female mice were randomly divided into control (CON) group (n=10), chronic unexpected mild stress (CUMS) group (n=15) and dexamethasone (DEX) group (n=15). Mice in the DEX group were gavaged twice a day with 0.2 mg/kg of DEX for 5 weeks, whereas CON mice were given the same amount of solvent. Mice in the CUMS group were exposed to stressors. After behavioural evaluations, all mice were sacrificed for harvesting tissues and blood samples. Enzyme-linked immunosorbent assay (ELISA) was conducted for measuring levels of corticosterone (CORT) and interleukin-1β (IL-1β) in sera, whereas levels of protein expression in colon and hippocampal tissues were examined by western blot. Faecal microbial communities were analysed by sequencing 16S rDNAs. Results Mice in CUMS and DEX groups exhibited severe depression-like behaviours. Compared with CON mice, CUMS-exposed mice showed a significant increase in both α and β diversity. Prevotellaceae and Desulfovibrio were enriched, whereas Bacilli were decreased in the faeces of mice in the CUMS group. DEX-treated mice had a decrease in the abundance of Clostridium XVIII. Levels of occludin in colon tissue of DEX-treated mice were reduced. Relative to mice in the CON and CUMS groups, DEX-treated mice contained higher serum levels of CORT and IL-1β. Compared with CON mice, mice in the DEX and CUMS groups had higher levels of IL-1β in sera and lower levels of glial fibrillary acidic protein (GFAP), Nestin, Synapsin-1 and P2Y12 receptor in the hippocampus. Conclusions Changes of gut microbiota diversity, intestinal integrity and neuroinflammation in the brain contribute to CUMS-induced depression, whereas pathobionts and excessive immunosuppression with damaged neuronal synapses is a basis of the DEX-induced depression.
Collapse
Affiliation(s)
- Jing Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhang Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chhetri Gaurav
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Usman Muhammad
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yantian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghong Chen
- Shanghai Mental Health Center, ShangHai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, ShangHai Jiao Tong University School of Medicine, Shanghai, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Fraga DB, Camargo A, Olescowicz G, Padilha DA, Mina F, Budni J, Brocardo PS, Rodrigues ALS. Ketamine, but not fluoxetine, rapidly rescues corticosterone-induced impairments on glucocorticoid receptor and dendritic branching in the hippocampus of mice. Metab Brain Dis 2021; 36:2223-2233. [PMID: 33950381 DOI: 10.1007/s11011-021-00743-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Although numerous studies have investigated the mechanisms underlying the fast and sustained antidepressant-like effects of ketamine, the contribution of the glucocorticoid receptor (GR) and dendritic branching remodeling to its responses remain to be fully established. This study investigated the ability of a single administration of ketamine to modulate the GR and dendritic branching remodeling and complexity in the hippocampus of mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ketamine (1 mg ∕kg, i.p.) or fluoxetine (10 mg ∕kg, p.o., conventional antidepressant) in mice. On 22nd, 24 h after the treatments, GR immunocontent in the hippocampus was analyzed by western blotting, while the dendritic arborization and dendrite length in the ventral and dorsal dentate gyrus (DG) of the hippocampus was analyzed by Sholl analysis. Chronic CORT administration downregulated hippocampal GR immunocontent, but this alteration was completely reversed by a single administration of ketamine, but not fluoxetine. Moreover, CORT administration significantly decreased dendritic branching in the dorsal and ventral DG areas and caused a mild decrease in dendrite length in both regions. Ketamine, but not fluoxetine, reversed CORT-induced dendritic branching loss in the ventral and dorsal DG areas, regions associated with mood regulation and cognitive functions, respectively. This study provides novel evidence that a single administration of ketamine, but not fluoxetine, rescued the impairments on GR and dendritic branching in the hippocampus of mice subjected to chronic CORT administration, effects that may be associated with its rapid antidepressant response.
Collapse
Affiliation(s)
- Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Dayane Azevedo Padilha
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Di Bari F, Catalano A, Bellone F, Martino G, Benvenga S. Vitamin D, Bone Metabolism, and Fracture Risk in Polycystic Ovary Syndrome. Metabolites 2021; 11:metabo11020116. [PMID: 33670644 PMCID: PMC7922814 DOI: 10.3390/metabo11020116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women. PCOS may have reproductive, metabolic, cardiovascular, and psychological implications. Vitamin D deficit is often encountered in PCOS women and may contribute to the pathophysiology of this disorder. As of the key role of vitamin D in bone and mineral metabolism, and because the vitamin D status appears to be closely linked with the PCOS manifestations including insulin resistance, obesity, ovulatory and menstrual irregularities, oxidative stress and PTH elevation, hypovitaminosis D may directly and indirectly via the different facets of PCOS impair bone health in these women. Although limited data are available on life-long fracture risk in women with PCOS, the importance of preserving bone health in youth and adults to prevent osteoporosis and related fractures is also recognized in PCOS women. Evidence of the association between vitamin D and the clinical hallmarks of PCOS are summarized and discussed. Vitamin D arises as a cornerstone in women with PCOS and contributes to the pathophysiological link between PCOS and bone metabolism.
Collapse
Affiliation(s)
- Flavia Di Bari
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Viale Gazzi, 98125 Messina, Italy; (F.D.B.); (F.B.); (G.M.); (S.B.)
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Viale Gazzi, 98125 Messina, Italy; (F.D.B.); (F.B.); (G.M.); (S.B.)
- Correspondence: ; Tel.: +39-090-2213987
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Viale Gazzi, 98125 Messina, Italy; (F.D.B.); (F.B.); (G.M.); (S.B.)
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Viale Gazzi, 98125 Messina, Italy; (F.D.B.); (F.B.); (G.M.); (S.B.)
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Viale Gazzi, 98125 Messina, Italy; (F.D.B.); (F.B.); (G.M.); (S.B.)
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Viale Gazzi, 98125 Messina, Italy
- Interdepartmental Program of Molecular & Clinical Endocrinology and Women’s Endocrine Health, University Hospital, A.O.U. Policlinico G. Martino, Viale Gazzi, 98125 Messina, Italy
| |
Collapse
|
21
|
Abstract
It has been 20 years since we first proposed vitamin D as a "possible" neurosteroid.( 1 ) Our work over the last two decades, particularly results from our cellular and animal models, has confirmed the numerous ways in which vitamin D differentiates the developing brain. As a result, vitamin D can now confidently take its place among all other steroids known to regulate brain development.( 2 ) Others have concentrated on the possible neuroprotective functions of vitamin D in adult brains. Here these data are integrated, and possible mechanisms outlined for the various roles vitamin D appears to play in both developing and mature brains and how such actions shape behavior. There is now also good evidence linking gestational and/or neonatal vitamin D deficiency with an increased risk of neurodevelopmental disorders, such as schizophrenia and autism, and adult vitamin D deficiency with certain degenerative conditions. In this mini-review, the focus is on what we have learned over these past 20 years regarding the genomic and nongenomic actions of vitamin D in shaping brain development, neurophysiology, and behavior in animal models. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darryl Walter Eyles
- Queensland Centre for Mental Health Research The Park Centre for Mental Health Wacol Australia.,Queensland Brain Institute University of Queensland St. Lucia Queensland Australia
| |
Collapse
|