1
|
Yu Q, Liu J, Jiang J, Liu F, Zhang Z, Yu X, Li M, Alam I, Ge L. Genome-Wide Identification, Characterization, and Expression Analysis of SPIRAL1 Family Genes in Legume Species. Int J Mol Sci 2023; 24:ijms24043958. [PMID: 36835373 PMCID: PMC9959322 DOI: 10.3390/ijms24043958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
The SPIRAL1 (SPR1) gene family encodes microtubule-associated proteins that are essential for the anisotropic growth of plant cells and abiotic stress resistance. Currently, little is known about the characteristics and roles of the gene family outside of Arabidopsis thaliana. This study intended to investigate the SPR1 gene family in legumes. In contrast to that of A. thaliana, the gene family has undergone shrinking in the model legume species Medicago truncatula and Glycine max. While the orthologues of SPR1 were lost, very few SPR1-Like (SP1L) genes were identified given the genome size of the two species. Specifically, the M. truncatula and G. max genomes only harbor two MtSP1L and eight GmSP1L genes, respectively. Multiple sequence alignment showed that all these members contain conserved N- and C-terminal regions. Phylogenetic analysis clustered the legume SP1L proteins into three clades. The SP1L genes showed similar exon-intron organizations and similar architectures in their conserved motifs. Many essential cis-elements are present in the promoter regions of the MtSP1L and GmSP1L genes associated with growth and development, plant hormones, light, and stress. The expression analysis revealed that clade 1 and clade 2 SP1L genes have relatively high expression in all tested tissues in Medicago and soybean, suggesting their function in plant growth and development. MtSP1L-2, as well as clade 1 and clade 2 GmSP1L genes, display a light-dependent expression pattern. The SP1L genes in clade 2 (MtSP1L-2, GmSP1L-3, and GmSP1L-4) were significantly induced by sodium chloride treatment, suggesting a potential role in the salt-stress response. Our research provides essential information for the functional studies of SP1L genes in legume species in the future.
Collapse
Affiliation(s)
- Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiayu Jiang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Fudong Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoye Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mengru Li
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (I.A.); (L.G.)
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (I.A.); (L.G.)
| |
Collapse
|
2
|
Microtubule Dynamics Plays a Vital Role in Plant Adaptation and Tolerance to Salt Stress. Int J Mol Sci 2021; 22:ijms22115957. [PMID: 34073070 PMCID: PMC8199277 DOI: 10.3390/ijms22115957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
Collapse
|
3
|
CLASP promotes stable tethering of endoplasmic microtubules to the cell cortex to maintain cytoplasmic stability in Arabidopsis meristematic cells. PLoS One 2018; 13:e0198521. [PMID: 29894477 PMCID: PMC5997327 DOI: 10.1371/journal.pone.0198521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Following cytokinesis in plants, Endoplasmic MTs (EMTs) assemble on the nuclear surface, forming a radial network that extends out to the cell cortex, where they attach and incorporate into the cortical microtubule (CMT) array. We found that in these post-cytokinetic cells, the MT-associated protein CLASP is enriched at sites of EMT-cortex attachment, and is required for stable EMT tethering and growth into the cell cortex. Loss of EMT-cortex anchoring in clasp-1 mutants results in destabilized EMT arrays, and is accompanied by enhanced mobility of the cytoplasm, premature vacuolation, and precocious entry into cell elongation phase. Thus, EMTs appear to maintain cells in a meristematic state by providing a structural scaffold that stabilizes the cytoplasm to counteract actomyosin-based cytoplasmic streaming forces, thereby preventing premature establishment of a central vacuole and rapid cell elongation.
Collapse
|
4
|
Novák D, Vadovič P, Ovečka M, Šamajová O, Komis G, Colcombet J, Šamaj J. Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. FRONTIERS IN PLANT SCIENCE 2018; 9:371. [PMID: 29628934 PMCID: PMC5877115 DOI: 10.3389/fpls.2018.00371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 05/11/2023]
Abstract
Phospholipase D alpha 1 (PLDα1, At3g15730) and its product phosphatidic acid (PA) are involved in a variety of cellular and physiological processes, such as cytoskeletal remodeling, regulation of stomatal closure and opening, as well as biotic and abiotic stress signaling. Here we aimed to study developmental expression patterns and subcellular localization of PLDα1 in Arabidopsis using advanced microscopy methods such as light-sheet fluorescence microscopy (LSFM) and structured illumination microscopy (SIM). We complemented two knockout pldα1 mutants with a YFP-tagged PLDα1 expressed under the PLDα1 native promoter in order to study developmental expression pattern and subcellular localization of PLDα1 in Arabidopsis thaliana under natural conditions. Imaging of tissue-specific and developmentally-regulated localization of YFP-tagged PLDα1 by LSFM in roots of growing seedlings showed accumulation of PLDα1-YFP in the root cap and the rhizodermis. Expression of PLDα1-YFP in the rhizodermis was considerably higher in trichoblasts before and during root hair formation and growth. Thus, PLDα1-YFP accumulated in emerging root hairs and in the tips of growing root hairs. PLDα1-YFP showed cytoplasmic subcellular localization in root cap cells and in cells of the root transition zone. In aerial parts of plants PLDα1-YFP was also localized in the cytoplasm showing enhanced accumulation in the cortical cytoplasmic layer of epidermal non-dividing cells of hypocotyls, leaves, and leaf petioles. However, in dividing cells of root apical meristem and leaf petiole epidermis PLDα1-YFP was enriched in mitotic spindles and phragmoplasts, as revealed by co-visualization with microtubules. Finally, super-resolution SIM imaging revealed association of PLDα1-YFP with both microtubules and clathrin-coated vesicles (CCVs) and pits (CCPs). In conclusion, this study shows the developmentally-controlled expression and subcellular localization of PLDα1 in dividing and non-dividing Arabidopsis cells.
Collapse
Affiliation(s)
- Dominik Novák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jean Colcombet
- UMR9213 Institut des Sciences des Plantes de Paris Saclay, Orsay, France
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
5
|
Zhou S, Chen Q, Li X, Li Y. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:112-121. [PMID: 28969791 DOI: 10.1016/j.plantsci.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 05/07/2023]
Abstract
Microtubules (MTs) are highly dynamical structures that play crucial roles in plant development and in response to environmental signals and stress conditions. MT-associated proteins (MAPs) play important roles in regulating the organization of MT arrays. MAP65 is a family of plant MT-bundling proteins. Here, we determined the role of MAP65-1 in the response to salt stress. MAP65-1 is involved not only in regulating the depolymerization, but also in the following reorganization of cortical MTs in salt stress responses. In addition, the depolymerization of the cortical MTs affected the survival of seedlings during salt stress, and map65-1 mutants had enhanced salt hypersensitivity levels. MAP65-1 interacted with mitogen-activated protein kinase (MPK) 3 and 6; however, only the mpk6 mutant exhibited hypersensitivity to salt stress, and MPK6 was involved in regulating the salt stress-induced depolymerization of cortical MTs. Thus, MAP65-1 plays a critical role in the response to salt stress and is required for regulating the rapid depolymerization and reorganization of cortical MTs. MAP65-1 interacts with MPK6, not MPK3, affecting the MT's dynamic instability which is critical for plant salt-stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Li C, Lu H, Li W, Yuan M, Fu Y. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1127-1142. [PMID: 28070891 DOI: 10.1111/pce.12905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance.
Collapse
Affiliation(s)
- Changjiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanmei Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Zhang Q, Qu Y, Wang Q, Song P, Wang P, Jia Q, Guo J. Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. JOURNAL OF PLANT RESEARCH 2017; 130:193-202. [PMID: 27864640 DOI: 10.1007/s10265-016-0870-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are emerging as essential regulators of cytoskeleton organization in plants. However, the underlying molecular mechanisms of PA-mediated microtubule reorganization in plants remain largely unknown. In this study, we used pharmacological and genetic approaches to analyze the function of Arabidopsis thaliana PLDα1 in the regulation of microtubule organization and cell development in response to microtubule-affecting drugs. Treatment with the microtubule-stabilizing drug paclitaxel resulted in less growth inhibition and decreased rightward slant of roots, longitudinal alignment of microtubules, and enhanced length of hypocotyl epidermal cells in the pldα1 mutant, the phenotype of which was rescued by exogenous application of PA. Moreover, the pldα1 mutant was sensitive to the microtubule-disrupting drugs oryzalin and propyzamide in terms of seedling survival ratio, left-skewing angle of roots and microtubule organization. In addition, both disruption and stabilization of microtubules induced by drugs activated PLDα1 activity. Our findings demonstrate that in A. thaliana, PLDα1/PA might regulate cell development by modulating microtubule organization in an activity-dependent manner.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
8
|
Chi Z, Ambrose C. Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays. BMC PLANT BIOLOGY 2016; 16:18. [PMID: 26774503 PMCID: PMC4715342 DOI: 10.1186/s12870-016-0703-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The cortical microtubules (CMTs) that line the plasma membrane of interphase plant cells are extensively studied owing to their importance in forming cell walls, and their usefulness as a model system for the study of MT dynamic instability and acentrosomal MT organization. CMTs influence the orientation and structure of cellulose microfibrils in the cell wall by cooperatively forming arrays of varied patterns from parallel to netted. These CMT patterns are controlled by the combined activities of MT dynamic instability and MT-MT interactions. However, it is an open question as to how CMT patterns may feedback to influence CMT dynamics and interactions. RESULTS To address this question, we investigated the effects of CMT array patterning on encounter-based CMT catastrophe, which occurs when one CMT grows into another and is unable to cross over. We hypothesized that the varied CMT angles present in disordered (mixed CMTs) arrays will create more opportunities for MT-MT interactions, and thus increase encounter-based catastrophe rates and distribution. Using live-cell imaging of Arabidopsis cotyledon and leaf epidermal cells, we found that roughly 87% of catastrophes occur via the encounter-based mechanism, with the remainder occurring without encounter (free). When comparing ordered (parallel) and disordered (mixed orientation) CMT arrays, we found that disordered configurations show higher proportions of encounter-based catastrophe relative to free. Similarly, disordered CMT arrays have more catastrophes in general than ordered arrays. Encounter-based catastrophes were associated with frequent and sustained periods of pause prior to depolymerization, and CMTs with tight anchoring to the plasma membrane were more prone to undergo encounter-based catastrophe than weakly-attached ones. This suggests that encounter-based catastrophe has a mechanical basis, wherein MTs form physical barriers to one another. Lastly, we show that the commonly used measure of catastrophe frequencies (Fcat) can also be influenced by CMT ordering and plasma membrane anchoring. CONCLUSIONS Our observations add a new layer of complexity to our current understanding of MT organization in plants, showing that not only do individual CMT dynamics influence CMT array organization, but that CMT organization itself has a strong effect on the behavior of individual MTs.
Collapse
Affiliation(s)
- Zhihai Chi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Chris Ambrose
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
9
|
Vildanova MS, Wang W, Smirnova EA. Specific organization of Golgi apparatus in plant cells. BIOCHEMISTRY (MOSCOW) 2014; 79:894-906. [DOI: 10.1134/s0006297914090065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q. Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. PLANTA 2014; 239:565-75. [PMID: 24271006 DOI: 10.1007/s00425-013-1999-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/11/2013] [Indexed: 05/20/2023]
Abstract
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca(2+) ([Ca(2+)]cyt) elevation was partially blocked, and exogenous Ca(2+)-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca(2+) increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca(2+), and microtubules are essential for ABA signaling.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Shaw SL. Reorganization of the plant cortical microtubule array. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:693-7. [PMID: 24446545 DOI: 10.1016/j.pbi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interphase microtubule arrays in flowering plant cells assemble at the cell cortex into patterns that affect cellular morphogenesis. A decade of live cell imaging studies has provided significant information about the in vivo properties of the microtubule polymers. Efforts to extrapolate individual properties to larger roles in organizing or patterning the microtubule array have produced models focused on self-organization and local levels of biological control. Recent studies looking at cortical microtubule arrays as they transition from an existing pattern to a new pattern have re-emerged as a testbed for examining these models and the molecular hypotheses underpinning them. The evidence suggests that microtubule patterning is locally controlled on the scale of a cell face, using or circumventing self-organizating properties as necessary.
Collapse
|
12
|
Ban Y, Kobayashi Y, Hara T, Hamada T, Hashimoto T, Takeda S, Hattori T. α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:848-58. [PMID: 23628996 DOI: 10.1093/pcp/pct065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
By using high-resolution two-dimensional PAGE followed by phosphoprotein-specific staining and peptide mass fingerprint analysis along with other assays, we found that α-tubulin is phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. The onset of the phosphorylation response was as early as 2 min after hyperosmotic stress treatment, and a major proportion of α-tubulin was phosphorylated after 60 min in root tissues. However, the phosphorylated form of α-tubulin was readily dephosphorylated upon stress removal. The phosphorylation site was identified as Thr349 by comprehensive mutagenesis of serine/threonine residues in a rice α-tubulin isoform followed by evaluation in cultured cell protoplasts. This residue is located at the surface for the interaction with β-tubulin in polymerized α-β tubulin dimers and has been proposed to be directly involved in this interaction. Thus, α-tubulin phosphorylation was considered to occur on free tubulin dimers in response to hyperosmotic stress. The incorporation of green fluorescent protein (GFP)-α-tubulin into cortical microtubules was completely inhibited in transgenic Arabidopsis when Thr349 was substituted with glutamate or aspartate. Using transgenic Arabidopsis plants expressing GFP-α-tubulin, we found that hyperosmotic stress causes extensive cortical microtubule depolymerization. Microtubule-destabilizing treatments such as propyzamide or oryzalin and temperature stresses resulted in α-tubulin phosphorylation, whereas hyperosmotic stress-induced α-tubulin phosphorylation was partially inhibited by taxol, which stabilizes microtubules. These results and the three-dimensional location of the phosphorylation site suggested that microtubules are depolymerized in response to hyperosmotic stress via α-tubulin phosphorylation. Together, the results of the present study reveal a novel mechanism that globally regulates the microtubule polymerization.
Collapse
Affiliation(s)
- Yoshinori Ban
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Vineyard L, Elliott A, Dhingra S, Lucas JR, Shaw SL. Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells. THE PLANT CELL 2013; 25:662-76. [PMID: 23444330 PMCID: PMC3608785 DOI: 10.1105/tpc.112.107326] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 05/21/2023]
Abstract
The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell's midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces.
Collapse
Affiliation(s)
- Laura Vineyard
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Sonia Dhingra
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Jessica R. Lucas
- Department of Biology, Santa Clara University, Santa Clara, California 95053
| | - Sidney L. Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
- Address correspondence to
| |
Collapse
|
14
|
Kurepa J, Wang S, Smalle J. The role of 26S proteasome-dependent proteolysis in the formation and restructuring of microtubule networks. PLANT SIGNALING & BEHAVIOR 2012; 7:1289-1295. [PMID: 22902696 PMCID: PMC3493416 DOI: 10.4161/psb.21543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this review, we summarize the evidence pointing at the important role of 26S proteasome-dependent proteolysis in the regulation of microtubule synthesis and microtubule dynamics. Because most of the advances in this relatively unexplored research field originate from yeast and animal studies, we have considered those studies that describe the role of proteolysis in processes that are evolutionarily conserved and known to exist in plants. In addition, we place particular emphasis on the proteasome-dependent degradation of plant-specific microtubule-associated protein SPIRAL1 and its function in MT rearrangements associated with salt stress.
Collapse
|
15
|
|
16
|
Wang C, Zhang LJ, Huang RD. Cytoskeleton and plant salt stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:29-31. [PMID: 21301221 PMCID: PMC3122001 DOI: 10.4161/psb.6.1.14202] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a highly dynamic component of plant cells and mainly based on microtubules (MTs), and actin filaments (AFs). The important functions of dynamic cytoskeletal networks have been indicated for almost every intracellular activity, from cell division to cell movement, cell morphogenesis and cell signal transduction. Recent studies have also indicated a close relationship between the plant cytoskeleton and plant salt stress tolerance. Salt stress is a significant factor that adversely affects crop productivity and quality of agricultural fields worldwide. The complicated regulatory mechanisms of plant salt tolerance have been the subject of intense research for decades. It is well accepted that cellular changes are very important in plant responses to salt stress. Because the organization and dynamics of cytoskeleton may play an important role in enhancing plant tolerance through various cell activities, study on salt stress-induced cytoskeletal network has been a vital topic in the subject of plant salt stress tolerance mechanisms. In this article, we introduce our recent work and review some current information on the dynamic changes and functions of cytoskeletal organization in response to salt stress. The accumulated data point to the existence of highly dynamic cytoskeletal arrays and the activation of complex cytoskeletal regulatory networks in response to salt stresses. The important role played by cytoskeleton in mediating the plant cell's response to salt stresses is particularly emphasized.
Collapse
Affiliation(s)
- Che Wang
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang, China.
| | | | | |
Collapse
|
17
|
Keech O, Pesquet E, Gutierrez L, Ahad A, Bellini C, Smith SM, Gardeström P. Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1710-20. [PMID: 20966154 PMCID: PMC2996031 DOI: 10.1104/pp.110.163402] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 10/18/2010] [Indexed: 05/18/2023]
Abstract
The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.
Collapse
Affiliation(s)
- Olivier Keech
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre of Excellence for Plant Metabolomics, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Allard JF, Ambrose JC, Wasteneys GO, Cytrynbaum EN. A mechanochemical model explains interactions between cortical microtubules in plants. Biophys J 2010; 99:1082-90. [PMID: 20712991 DOI: 10.1016/j.bpj.2010.05.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/11/2023] Open
Abstract
Microtubules anchored to the two-dimensional cortex of plant cells collide through plus-end polymerization. Collisions can result in rapid depolymerization, directional plus-end entrainment, or crossover. These interactions are believed to give rise to cellwide self-organization of plant cortical microtubules arrays, which is required for proper cell wall growth. Although the cell-wide self-organization has been well studied, less emphasis has been placed on explaining the interactions mechanistically from the molecular scale. Here we present a model for microtubule-cortex anchoring and collision-based interactions between microtubules, based on a competition between cross-linker bonding, microtubule bending, and microtubule polymerization. Our model predicts a higher probability of entrainment at smaller collision angles and at longer unanchored lengths of plus-ends. This model addresses observed differences between collision resolutions in various cell types, including Arabidopsis cells and Tobacco cells.
Collapse
Affiliation(s)
- Jun F Allard
- Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
19
|
Hawkins RJ, Tindemans SH, Mulder BM. Model for the orientational ordering of the plant microtubule cortical array. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011911. [PMID: 20866652 DOI: 10.1103/physreve.82.011911] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Indexed: 05/13/2023]
Abstract
The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
Allard JF, Wasteneys GO, Cytrynbaum EN. Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Mol Biol Cell 2009; 21:278-86. [PMID: 19910489 PMCID: PMC2808237 DOI: 10.1091/mbc.e09-07-0579] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microtubules confined to the two-dimensional cortex of elongating plant cells must form a parallel yet dispersed array transverse to the elongation axis for proper cell wall expansion. Some of these microtubules exhibit free minus-ends, leading to migration at the cortex by hybrid treadmilling. Collisions between microtubules can result in plus-end entrainment ("zippering") or rapid depolymerization. Here, we present a computational model of cortical microtubule organization. We find that plus-end entrainment leads to self-organization of microtubules into parallel arrays, whereas catastrophe-inducing collisions do not. Catastrophe-inducing boundaries (e.g., upper and lower cross-walls) can tune the orientation of an ordered array to a direction transverse to elongation. We also find that changes in dynamic instability parameters, such as in mor1-1 mutants, can impede self-organization, in agreement with experimental data. Increased entrainment, as seen in clasp-1 mutants, conserves self-organization, but delays its onset and fails to demonstrate increased ordering. We find that branched nucleation at acute angles off existing microtubules results in distinctive sparse arrays and infer either that microtubule-independent or coparallel nucleation must dominate. Our simulations lead to several testable predictions, including the effects of reduced microtubule severing in katanin mutants.
Collapse
Affiliation(s)
- Jun F Allard
- Institute of Applied Mathematics and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | | | | |
Collapse
|
21
|
Fu Y, Xu T, Zhu L, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 2009; 19:1827-32. [PMID: 19818614 DOI: 10.1016/j.cub.2009.08.052] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/29/2022]
Abstract
Cortical microtubules (MTs) participate in the spatial control of cell expansion and division that is required for plant growth and morphogenesis. Well-ordered transverse cortical MTs promote cell elongation and restrict radial cell expansion. The molecular mechanism controlling their ordering is poorly understood. We report the first known signaling pathway that promotes the organization of cortical MTs into parallel arrays oriented perpendicular to the axis of cell elongation in plants. Well-ordered MTs locally restrict cell expansion to promote indentation formation in the jigsaw-puzzle-shaped pavement cells of Arabidopsis leaves. Deleting ROP6, a Rho-family GTPase, randomized cortical MTs and released the localized restriction of cell expansion, whereas ROP6 overexpression enhanced MT ordering, turning the jigsaw-puzzle appearance of cells into a cylindrical shape. ROP6 directly binds and activates MT-associated RIC1 to achieve the MT ordering. The ROP6-RIC1 pathway also affects MT ordering of hypocotyl cells, showing a broad role for this pathway in the spatial regulation of cell expansion.
Collapse
Affiliation(s)
- Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China.
| | | | | | | | | |
Collapse
|
22
|
Shi FM, Yao LL, Pei BL, Zhou Q, Li XL, Li Y, Li YZ. Cortical microtubule as a sensor and target of nitric oxide signal during the defence responses to Verticillium dahliae toxins in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:428-438. [PMID: 19183295 DOI: 10.1111/j.1365-3040.2009.01939.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms of signal transduction of plants in response to Verticillium dahliae (VD) are not known. Here, we show that Arabidopsis reacts to VD-toxins with a rapid burst of nitric oxide (NO) and cortical microtubule destabilization. VD-toxins treatment triggered a disruption of cortical microtubules network. This disruption can be influenced by NO production. However, cortical microtubule disruptions were not involved in regulating the NO production. The results indicated that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubule. Cortical microtubules may act as a target of NO signal and as a sensor to mediate the activation of PR-1 gene expression. These results suggested that NO production and cortical microtubule dynamics appeared to be parts of the important signalling system and are involved in the defence mechanisms to VD-toxins in Arabidopsis.
Collapse
Affiliation(s)
- Fu-Mei Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 2009; 19:62-71. [PMID: 19144522 DOI: 10.1016/j.tcb.2008.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 01/22/2023]
Abstract
The shape of plant cells depends on cortical microtubules. Their freedom from central microtubule organizing centres provides a powerful experimental system to study microtubule self-organization. New ideas have emerged from live-cell imaging of microtubules, particularly in the model system Arabidopsis thaliana, revealing the importance of encounters between microtubules in driving self-organization. Encounters are modulated by intrinsic microtubule-assembly dynamics, along with polymer activities that include cortical attachment, bundling and severing. Balancing the activities of microtubule-associated proteins (such as MOR1, CLASP, MAP65s and katanins) that control these processes is crucial for fine-tuning the organization of microtubule arrays. Too much or too little of any given activity tips the balance, with often dramatic effects on array organization, cell morphogenesis and even organ chirality.
Collapse
|
24
|
Sainsbury F, Collings DA, Mackun K, Gardiner J, Harper JDI, Marc J. Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:116-31. [PMID: 18557839 DOI: 10.1111/j.1365-313x.2008.03574.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transversely oriented cortical microtubules in elongating cells typically reorient themselves towards longitudinal directions at the end of cell elongation. We have investigated the reorientation mechanism along the outer epidermal wall in maturing leek (Allium porrum L.) leaves using a GFP-MBD microtubule reporter gene and fluorescence microscopy. Incubating leaf segments for 14-18 h with the anti-actin or anti-actomyosin agents, 20 microm cytochalasin D or 20 mM 2,3-butanedione monoxime, inhibited the normal developmental reorientation of microtubules to the longitudinal direction. Observation of living cells revealed a small subpopulation of microtubules with their free ends swinging into oblique or longitudinal directions, before continuing to assemble in the new direction. Electron microscopy confirmed that longitudinal microtubules are partly detached from the plasma membrane. Incubating leaf segments with 0.2% 1 degree-butanol, an activator of phospholipase D, which has been implicated in plasma membrane-microtubule anchoring, promoted the reorientation, presumably by promoting microtubule detachment from the membrane. Stabilizing microtubules with 10 microm taxol also promoted longitudinal orientation, even in the absence of cytoplasmic streaming. These results were consistent with confocal microscopy of live cells before and after drug treatments, which also revealed that the slow (days) global microtubule reorientation is superimposed over short-term (hours) regional cycling in a clockwise and an anti-clockwise direction. We propose that partial detachment of transverse microtubules from the plasma membrane in maturing cells exposes them to hydrodynamic forces of actomyosin-driven cytoplasmic streaming, which bends or shifts pivoting microtubules into longitudinal directions, and thus provides an impetus to push microtubule dynamics in the new direction.
Collapse
Affiliation(s)
- Frank Sainsbury
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Lucas J, Shaw SL. Cortical microtubule arrays in the Arabidopsis seedling. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:94-98. [PMID: 18226578 DOI: 10.1016/j.pbi.2007.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 05/25/2023]
Abstract
Advances in live-cell imaging technology have provided an unprecedented look at the dynamic behaviors of the plant microtubule cytoskeleton. Recent studies revisit the classic question of how plants create cell shape through the patterned construction of the cell wall. Visualization of the cellulose synthase complex traveling in the plasma membrane has brought a watershed of new information about cellulose deposition. Observation of the cellulose synthase complex tracking precisely over the underlying cortical microtubules has provided clear evidence that the microtubule array pattern serves as a spatial template for cellulose microfibril extrusion. Understanding how the microtubules are organized into specific array patterns remains a challenge, though new ideas are arising from genetic and cell biological studies. Long-term time-lapse observations of the microtubule arrays in light-grown hypocotyl cells have revealed a striking process of microtubule patterning possibly linked to the creation of polylamellate cell walls.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
26
|
Abstract
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.
Collapse
Affiliation(s)
- Patricia G Wilson
- Regenerative Bioscience Center, Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
27
|
Zhang Z, Friedman H, Meir S, Rosenberger I, Halevy AH, Philosoph-Hadas S. Microtubule reorientation in shoots precedes bending during the gravitropic response of cut snapdragon spikes. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:289-96. [PMID: 17658658 DOI: 10.1016/j.jplph.2007.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 05/16/2023]
Abstract
The microtubule reorientation during the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes was investigated. Using indirect immunofluorescence methods, we examined changes in microtubule orientation in the cortex, endodermis and pith tissues of the shoot bending zone, in response to gravistimulation. Our results show that dense microtubule arrays were visible throughout the cortical, endodermal and pith shoot tissues, and that the transverse orientation of the microtubules (perpendicular to the growth axis) was specifically associated with the shoot growing bending zone. Microtubules showed gravity-induced kinetics of changes in their orientation, which occurred only in the upper stem flank and preceded shoot bending. While this observation, that the gravity-induced microtubule orientation precedes bending, was previously reported only in special above-ground organs such as coleoptiles and hypocotyls, our present study is the first to show that such patterns of change occur in mature flowering shoots. These changes were exhibited first in the upper flank of the cortex and then in the upper flank of the endodermis. No changes in microtubule orientation were observed in the cortex or endodermis tissues of the lower flanks or in the pith, suggesting that these tissues continue to grow during shoot gravistimulation. Our results imply that microtubules may be involved in growth cessation of the upper shoot flank occurring during the gravitropic bending of snapdragon cut spikes.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1534-47. [PMID: 17906320 DOI: 10.1093/pcp/pcm123] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the results of some studies indicate that salt stress affects the organization of microtubules, it remains an open question whether microtubules play an active role in the plant's ability to withstand salt stress. In the present study, we showed that salt stress-induced wild-type Arabidopsis seedling roots display right-handed skewed growth and depolymerization of the cortical microtubules. The results of a long-term observational study showed that cortical microtubules depolymerized then reorganized themselves under salt stress. Stabilization of microtubules with paclitaxel resulted in more seedling death under salt stress, while disruption of microtubules with oryzalin or propyzamide rescued seedlings from death. Seedlings in which the cortical microtubules were reorganized did not succumb to salt stress. These results suggest that both depolymerization and reorganization of the cortical microtubules are important for the plant's ability to withstand salt stress. Depolymerizing microtubules by drugs rescues seedlings from death under salt stress. This rescue effect was abolished by removing calcium from the medium or treatment with a calcium channel inhibitor. Depolymerization of the microtubules is followed by an increase in the free cytoplasmic calcium concentration. The addition of calcium to the growth medium increased the number of seedlings in which recovery of the cortical microtubules occurred, whereas the removal of calcium decreased the number of seedlings in which recovery occurred. Therefore, depolymerization of the cortical microtubules raises intracellular calcium concentrations, while reorganization of the cortical microtubules and seedling survival may be mediated by calcium influx in salt stress.
Collapse
Affiliation(s)
- Che Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | |
Collapse
|
29
|
Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T. Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. PLANT & CELL PHYSIOLOGY 2006; 47:1158-68. [PMID: 16861712 DOI: 10.1093/pcp/pcj090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cortical microtubule arrays are critical in determining the growth axis of diffusely growing plant cells, and various environmental and physiological factors are known to affect the array organization. Microtubule organization is partly disrupted in the spiral1 mutant of Arabidopsis thaliana, which displays a right-handed helical growth phenotype in rapidly elongating epidermal cells. We show here that mutations in the plasma membrane Na(+)/H(+) antiporter SOS1 and its regulatory kinase SOS2 efficiently suppressed both microtubule disruption and helical growth phenotypes of spiral1, and that sos1 and sos2 roots in the absence of salt stress exhibited altered helical growth response to microtubule-interacting drugs at low doses. Salt stress also altered root growth response to the drugs in wild-type roots. Suppression of helical growth appeared to be specific to spiral1 since other helical growth mutants were not rescued. The effects of sos1 in suppressing spiral1 defects and in causing abnormal drug responses were nullified in the presence of the hkt1 Na(+) influx carrier mutation in roots but not in hypocotyls. These results suggest that cytoplasmic salt imbalance caused by insufficient SOS1 activity compromises cortical microtubule functions in which microtubule-localized SPIRAL1 is specifically involved.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nakajima K, Kawamura T, Hashimoto T. Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2006; 47:513-22. [PMID: 16478750 DOI: 10.1093/pcp/pcj020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis spiral1 (spr1) mutants show a right-handed helical growth phenotype in roots and etiolated hypocotyls due to impaired directional growth of rapidly expanding cells. SPR1 encodes a small protein with as yet unknown biochemical functions, though its localization to cortical microtubules (MTs) suggests that SPR1 maintains directional cell expansion by regulating cortical MT functions. The Arabidopsis genome contains five SPR1-LIKE (SP1L) genes that share high sequence identity in N- and C-terminal regions. Overexpression of SP1Ls rescued the helical growth phenotype of spr1, indicating that SPR1 and SP1L proteins share the same biochemical functions. Expression analyses revealed that SPR1 and SP1L genes are transcribed in partially overlapping tissues. A combination of spr1 and sp1l mutations resulted in randomly oriented cortical MT arrays and isotropic expansion of epidermal cells. These observations suggest that SPR1 and SP1Ls act redundantly in maintaining the cortical MT organization essential for anisotropic cell growth, and that the helical growth phenotype of spr1 results from a partially compromised state of cortical MTs. Additionally, inflorescence stems of spr1 sp1l multiple mutants showed a right-handed tendril-like twining growth, indicating that a directional winding response may be conferred to the non-directional nutational movement by modulating the expression of SPR1 homologs.
Collapse
Affiliation(s)
- Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | | | | |
Collapse
|