1
|
Zhao M, Peng Z, Qin Y, Tamang TM, Zhang L, Tian B, Chen Y, Liu Y, Zhang J, Lin G, Zheng H, He C, Lv K, Klaus A, Marcon C, Hochholdinger F, Trick HN, Liu Y, Cho MJ, Park S, Wei H, Zheng J, White FF, Liu S. Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize. THE PLANT CELL 2023; 35:2736-2749. [PMID: 37233025 PMCID: PMC10396389 DOI: 10.1093/plcell/koad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
Collapse
Affiliation(s)
- Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yang Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ling Zhang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yueying Chen
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junli Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang 150040, China
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
3
|
Guo H, Ji J, Wang J, Sun X. Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies. Compr Rev Food Sci Food Saf 2020; 19:895-926. [DOI: 10.1111/1541-4337.12545] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jia‐sheng Wang
- Department of Environmental ToxicologyUniversity of Georgia Athens Georgia
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| |
Collapse
|
4
|
Mohamed MA, Abd-Elsalam KA. Nanoparticles and gene silencing for suppression of mycotoxins. NANOMYCOTOXICOLOGY 2020:423-448. [DOI: 10.1016/b978-0-12-817998-7.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Zhang C, Lv M, Yin W, Dong T, Chang C, Miao Y, Jia Y, Deng Y. Xanthomonas campestris Promotes Diffusible Signal Factor Biosynthesis and Pathogenicity by Utilizing Glucose and Sucrose from Host Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:157-166. [PMID: 30156480 DOI: 10.1094/mpmi-07-18-0187-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The plant pathogen Xanthomonas campestris pv. campestris produces diffusible signal factor (DSF) quorum sensing (QS) signals to regulate its biological functions and virulence. Our previous study showed that X. campestris pv. campestris utilizes host plant metabolites to enhance the biosynthesis of DSF family signals. However, it is unclear how X. campestris pv. campestris benefits from the metabolic products of the host plant. In this study, we observed that the host plant metabolites not only boosted the production of the DSF family signals but also modulated the expression levels of DSF-regulated genes in X. campestris pv. campestris. Infection with X. campestris pv. campestris induced changes in the expression of many sugar transporter genes in Arabidopsis thaliana. Exogenous addition of sucrose or glucose, which are the major products of photosynthesis in plants, enhanced DSF signal production and X. campestris pv. campestris pathogenicity in the Arabidopsis model. In addition, several sucrose hydrolase-encoding genes in X. campestris pv. campestris and sucrose invertase-encoding genes in the host plant were notably upregulated during the infection process. These enzymes hydrolyzed sucrose to glucose and fructose, and in trans expression of one of these enzymes, CINV1 of A. thaliana or XC_0805 of X. campestris pv. campestris, enhanced DSF signal biosynthesis in X. campestris pv. campestris in the presence of sucrose. Taken together, our findings demonstrate that X. campestris pv. campestris applies multiple strategies to utilize host plant sugars to enhance QS and pathogenicity.
Collapse
Affiliation(s)
- Chunyan Zhang
- 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- 2 Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University
| | - Mingfa Lv
- 3 Integrative Microbiology Research Centre, South China Agricultural University
| | - Wenfang Yin
- 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- 2 Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University
| | - Tingyan Dong
- 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- 2 Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University
| | - Changqing Chang
- 2 Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University
- 3 Integrative Microbiology Research Centre, South China Agricultural University
| | - Yansong Miao
- 4 School of Biological Sciences, Nanyang Technological University, Singapore 637551; and
| | - Yantao Jia
- 5 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinyue Deng
- 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- 2 Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University
- 3 Integrative Microbiology Research Centre, South China Agricultural University
| |
Collapse
|
6
|
Rinaldi FC, Doyle LA, Stoddard BL, Bogdanove AJ. The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Res 2017; 45:6960-6970. [PMID: 28460076 PMCID: PMC5499867 DOI: 10.1093/nar/gkx342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Transcription activator-like effectors (TALEs) recognize their DNA targets via tandem repeats, each specifying a single nucleotide base in a one-to-one sequential arrangement. Due to this modularity and their ability to bind long DNA sequences with high specificity, TALEs have been used in many applications. Contributions of individual repeat-nucleotide associations to affinity and specificity have been characterized. Here, using in vitro binding assays, we examined the relationship between the number of repeats in a TALE and its affinity, for both target and non-target DNA. Each additional repeat provides extra binding energy for the target DNA, with the gain decaying exponentially such that binding energy saturates. Affinity for non-target DNA also increases non-linearly with the number of repeats, but with a slower decay of gain. The difference between the effect of length on affinity for target versus non-target DNA manifests in specificity increasing then diminishing with increasing TALE length, peaking between 15 and 19 repeats. Modeling across different hypothetical saturation levels and rates of gain decay, reflecting different repeat compositions, yielded a similar range of specificity optima. This range encompasses the mean and median length of native TALEs, suggesting that these proteins as a group have evolved for maximum specificity.
Collapse
Affiliation(s)
- Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Majumdar R, Rajasekaran K, Cary JW. RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. FRONTIERS IN PLANT SCIENCE 2017; 8:200. [PMID: 28261252 PMCID: PMC5306134 DOI: 10.3389/fpls.2017.00200] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/02/2017] [Indexed: 05/20/2023]
Abstract
Mycotoxin contamination in food and feed crops is a major concern worldwide. Fungal pathogens of the genera Aspergillus. Fusarium, and Penicillium are a major threat to food and feed crops due to production of mycotoxins such as aflatoxins, 4-deoxynivalenol, patulin, and numerous other toxic secondary metabolites that substantially reduce the value of the crop. While host resistance genes are frequently used to introgress disease resistance into elite germplasm, either through traditional breeding or transgenic approaches, such resistance is often compromised by the evolving pathogen over time. RNAi-based host-induced gene silencing of key genes required by the pathogen for optimal growth, virulence and/or toxin production, can serve as an alternative, pre-harvest approach for disease control. RNAi represents a robust and efficient tool that can be used in a highly targeted, tissue specific manner to combat mycotoxigenic fungi infecting crop plants. Successful transgenic RNAi implementation depends on several factors including (1) designing vectors to produce double-stranded RNAs (dsRNAs) that will generate small interfering RNA (siRNA) species for optimal gene silencing and reduced potential for off-target effects; (2) availability of ample target siRNAs at the infection site; (3) efficient uptake of siRNAs by the fungus; (4) siRNA half-life and (5) amplification of the silencing effect. This review provides a critical and comprehensive evaluation of the published literature on the use of RNAi-based approaches to control mycotoxin contamination in crop plants. It also examines experimental strategies used to better understand the mode of action of RNAi with the aim of eliminating mycotoxin contamination, thereby improving food and feed safety.
Collapse
|
8
|
Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ. A quick guide to CRISPR sgRNA design tools. GM CROPS & FOOD 2016; 6:266-76. [PMID: 26745836 PMCID: PMC5033207 DOI: 10.1080/21645698.2015.1137690] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Targeted genome editing is now possible in nearly any organism and is widely acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-Cas9 system is the current favorite because it has been shown to work in many species, does not necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array of CRISPR design tools that vary in design specifications and parameter choices, available genomes, graphical visualization, and downstream analysis functionality. To help researchers choose a tool that best suits their specific research needs, we review the functionality of various CRISPR design tools including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.edu/cgat ).
Collapse
Affiliation(s)
- Vincent A Brazelton
- a Interdepartmental Genetics and Genomics Program; Iowa State University ; Ames , IA USA.,b Department of Agronomy ; Iowa State University ; Ames , IA USA
| | - Scott Zarecor
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - David A Wright
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - Yuan Wang
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Jie Liu
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Keting Chen
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Bing Yang
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - Carolyn J Lawrence-Dill
- a Interdepartmental Genetics and Genomics Program; Iowa State University ; Ames , IA USA.,b Department of Agronomy ; Iowa State University ; Ames , IA USA.,c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA.,d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA
| |
Collapse
|
9
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
10
|
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 2015; 67:461-71. [PMID: 26179993 DOI: 10.1002/iub.1394] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/07/2022]
Abstract
Plant sugar will eventually be exported transporter (SWEET) sugar transporters have been implicated in various developmental processes where sugar efflux is essential, including sucrose loading of phloem for long-distance sugar transport, nectar secretion, embryo and pollen nutrition, and maintenance of sugar homeostasis in plant organs. Notably, these transporters are selectively targeted by pathogens to gain access to host sugars. In most cases, when SWEET function is blocked, the growth and virulence of the pathogen is also reduced. There is growing evidence to suggest that the lifestyle of the pathogen may dictate which SWEET or set of SWEET genes are recruited for pathogen growth and proliferation. Furthermore, SWEET transporters may also play a role in abiotic stress tolerance by enabling plant growth under unfavorable environmental conditions. This review provides an overview of the diverse functions of SWEET proteins in plant development, pathogen nutrition, and abiotic stress tolerance. In addition, utility of the model legume Medicago truncatula as a tool to elucidate SWEET function in diverse host-microbe interactions is discussed.
Collapse
Affiliation(s)
- Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
11
|
Barriuso J, Nagaraju R, Hurlstone A. Zebrafish: a new companion for translational research in oncology. Clin Cancer Res 2015; 21:969-75. [PMID: 25573382 DOI: 10.1158/1078-0432.ccr-14-2921] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an era of high-throughput "omic" technologies, the unprecedented amount of data that can be generated presents a significant opportunity but simultaneously an even greater challenge for oncologists trying to provide personalized treatment. Classically, preclinical testing of new targets and identification of active compounds against those targets have entailed the extensive use of established human cell lines, as well as genetically modified mouse tumor models. Patient-derived xenografts in zebrafish may in the near future provide a platform for selecting an appropriate personalized therapy and together with zebrafish transgenic tumor models represent an alternative vehicle for drug development. The zebrafish is readily genetically modified. The transparency of zebrafish embryos and the recent development of pigment-deficient zebrafish afford researchers the valuable capacity to observe directly cancer formation and progression in a live vertebrate host. The zebrafish is amenable to transplantation assays that test the serial passage of fluorescently labeled tumor cells as well as their capacity to disseminate and/or metastasize. Progress achieved to date in genetic engineering and xenotransplantation will establish the zebrafish as one of the most versatile animal models for cancer research. A model organism that can be used in transgenesis, transplantation assays, single-cell functional assays, and in vivo imaging studies make zebrafish a natural companion for mice in translational oncology research.
Collapse
Affiliation(s)
- Jorge Barriuso
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom.
| | - Raghavendar Nagaraju
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Adam Hurlstone
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
12
|
Lim KI. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells. BMB Rep 2015; 48:6-12. [PMID: 25104401 PMCID: PMC4345644 DOI: 10.5483/bmbrep.2015.48.1.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future.
Collapse
Affiliation(s)
- Kwang-il Lim
- Department of Medical and Pharmaceutical Sciences, College of Science, Sookmyung Women’s University, Seoul 140-742, Korea
| |
Collapse
|
13
|
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet 2014; 5:274. [PMID: 25177343 PMCID: PMC4132484 DOI: 10.3389/fgene.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/26/2014] [Indexed: 12/25/2022] Open
Abstract
Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level.
Collapse
Affiliation(s)
- Sara H Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - J S Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| |
Collapse
|