1
|
Li M, Xu M, Su A, Zhang Y, Niu L, Xu Y. Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome. Front Microbiol 2022; 13:888086. [PMID: 35602076 PMCID: PMC9114715 DOI: 10.3389/fmicb.2022.888086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Combined organic and inorganic pollutants can greatly impact crops and microbes, but the interaction between coexisted pollutants and their effects on root-associated microbes under flooding conditions remains poorly understood. In this study, greenhouse experiments were conducted to investigate the individual and combined effects of phenanthrene (PHE) and copper (Cu) on rice uptake and root-associated microbial coping strategies. The results showed that more than 90% of phenanthrene was degraded, while the existence of Cu significantly reduced the dissipation of PHE in the rhizosphere, and the coexistence of phenanthrene and copper promoted their respective accumulation in plant roots. Copper played a dominant role in the interaction between these two chemicals. Microbes that can tolerate heavy metals and degrade PAHs, e.g., Herbaspirillum, Sphingobacteriales, and Saccharimonadales, were enriched in the contaminated soils. Additionally, microbes associated with redox processes reacted differently under polluted treatments. Fe reducers increased in Cu-treated soils, while sulfate reducers and methanogens were considerably inhibited under polluted treatments. In total, our results uncover the combined effect of heavy metals and polycyclic aromatic hydrocarbons on the assemblage of root-associated microbial communities in anaerobic environments and provide useful information for the selection of effective root-associated microbiomes to improve the resistance of common crops in contaminated sites.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., Ltd., Jinan, China
| | - Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories. Genes (Basel) 2021; 12:genes12091431. [PMID: 34573413 PMCID: PMC8466292 DOI: 10.3390/genes12091431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO3) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils.
Collapse
|
3
|
Ma Q, Bücking H, Gonzalez Hernandez JL, Subramanian S. Single-Cell RNA Sequencing of Plant-Associated Bacterial Communities. Front Microbiol 2019; 10:2452. [PMID: 31736899 PMCID: PMC6828647 DOI: 10.3389/fmicb.2019.02452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022] Open
Abstract
Plants in soil are not solitary, hence continually interact with and obtain benefits from a community of microbes ("microbiome"). The meta-functional output from the microbiome results from complex interactions among the different community members with distinct taxonomic identities and metabolic capacities. Particularly, the bacterial communities of the root surface are spatially organized structures composed of root-attached biofilms and planktonic cells arranged in complex layers. With the distinct but coordinated roles among the different member cells, bacterial communities resemble properties of a multicellular organism. High throughput sequencing technologies have allowed rapid and large-scale analysis of taxonomic composition and metabolic capacities of bacterial communities. However, these methods are generally unable to reconstruct the assembly of these communities, or how the gene expression patterns in individual cells/species are coordinated within these communities. Single-cell transcriptomes of community members can identify how gene expression patterns vary among members of the community, including differences among different cells of the same species. This information can be used to classify cells based on functional gene expression patterns, and predict the spatial organization of the community. Here we discuss strategies for the isolation of single bacterial cells, mRNA enrichment, library construction, and analysis and interpretation of the resulting single-cell RNA-Seq datasets. Unraveling regulatory and metabolic processes at the single cell level is expected to yield an unprecedented discovery of mechanisms involved in bacterial recruitment, attachment, assembly, organization of the community, or in the specific interactions among the different members of these communities.
Collapse
Affiliation(s)
- Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Jose L. Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
4
|
Urbina H, Breed MF, Zhao W, Lakshmi Gurrala K, Andersson SGE, Ågren J, Baldauf S, Rosling A. Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biol 2018; 122:231-240. [PMID: 29551197 DOI: 10.1016/j.funbio.2017.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 01/16/2023]
Abstract
Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana. Plants were grown under controlled conditions in organic topsoil local to the Swedish genotype, and harvested after ten weeks. Total DNA was extracted from three belowground compartments: endosphere (sonicated roots), rhizosphere and bulk soil, and fungal communities were characterized from each by amplification and sequencing of the fungal barcode region ITS2. Fungal species diversity was found to decrease from bulk soil to rhizosphere to endosphere. A significant effect of plant genotype on fungal community composition was detected only in the endosphere compartment. Despite A. thaliana being a non-mycorrhizal plant, it hosts a number of known mycorrhiza fungi in its endosphere compartment, which is also colonized by endophytic, pathogenic and saprotrophic fungi. Species in the Archaeorhizomycetes were most abundant in rhizosphere samples suggesting an adaptation to environments with high nutrient turnover for some of these species. We conclude that A. thaliana endosphere fungal communities represent a selected subset of fungi recruited from soil and that plant genotype has small but significant quantitative and qualitative effects on these communities.
Collapse
Affiliation(s)
- Hector Urbina
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden; Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN, 47907, USA
| | - Martin F Breed
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden; School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, SA-5005, Australia
| | - Weizhou Zhao
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Kanaka Lakshmi Gurrala
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Sandra Baldauf
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| |
Collapse
|
5
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Poncini L, Wyrsch I, Dénervaud Tendon V, Vorley T, Boller T, Geldner N, Métraux JP, Lehmann S. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 2017; 12:e0185808. [PMID: 28973025 PMCID: PMC5626561 DOI: 10.1371/journal.pone.0185808] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.
Collapse
Affiliation(s)
- Lorenzo Poncini
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ines Wyrsch
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Thomas Vorley
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Boller
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Silke Lehmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, Malmstrom RR, Deutschbauer AM, Dangl JL, Visel A. Genome-wide identification of bacterial plant colonization genes. PLoS Biol 2017; 15:e2002860. [PMID: 28938018 PMCID: PMC5627942 DOI: 10.1371/journal.pbio.2002860] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/04/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes. Plants fix carbon to create an abundance of sugars and amino acids, thus providing an enticing environment for microorganisms that reside in soil. Once these microorganisms have colonized the root environment, they can dramatically influence plant growth and development. We set out to identify a comprehensive set of microbial genes that control or influence root colonization, using a genome-wide transposon mutagenesis approach (randomly barcoded transposon sequencing [RB-TnSeq]). By using this method, we identified several hundred genes that, when mutated, affect the ability of the bacterium P. simiae to competitively colonize the root system of the model plant A. thaliana. These included many genes purported to be involved in carbohydrate metabolism, cell wall biosynthesis, and motility, underscoring the notion that sugar metabolism, defense, and motility are all key features of a root-colonizing microbe. We also identified several amino acid transport and metabolism genes with mutations that confer a fitness advantage in root colonization. Lastly, we identified several genes with no known function that significantly alter root colonization ability when mutated. These findings suggest novel engineering strategies to improve biological product development, and will facilitate the mechanistic exploration of the root colonization process.
Collapse
Affiliation(s)
- Benjamin J. Cole
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Meghan E. Feltcher
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Waters
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Tatiana S. Mucyn
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Ryan
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Gaoyan Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Sabah Ul-Hasan
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Meredith McDonald
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jeffery L. Dangl
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JLD); (AV)
| | - Axel Visel
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail: (JLD); (AV)
| |
Collapse
|
8
|
Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1110. [PMID: 27540383 PMCID: PMC4973397 DOI: 10.3389/fpls.2016.01110] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Any successful strategy aimed at enhancing crop productivity with microbial products ultimately relies on the ability to scale at regional to global levels. Microorganisms that show promise in the lab may lack key characteristics for widespread adoption in sustainable and productive agricultural systems. This paper provides an overview of critical considerations involved with taking a strain from discovery to the farmer's field. In addition, we review some of the most effective microbial products on the market today, explore the reasons for their success and outline some of the major challenges involved in industrial production and commercialization of beneficial strains for widespread agricultural application. General processes associated with commercializing viable microbial products are discussed in two broad categories, biofertility inoculants and biocontrol products. Specifically, we address what farmers desire in potential microbial products, how mode of action informs decisions on product applications, the influence of variation in laboratory and field study data, challenges with scaling for mass production, and the importance of consistent efficacy, product stability and quality. In order to make a significant impact on global sustainable agriculture, the implementation of plant beneficial microorganisms will require a more seamless transition between laboratory and farm application. Early attention to the challenges presented here will improve the likelihood of developing effective microbial products to improve crop yields, decrease disease severity, and help to feed an increasingly hungry planet.
Collapse
|
9
|
Microbial Gardening. Cell 2015. [DOI: 10.1016/j.cell.2015.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|