1
|
Gladieux P, van Oosterhout C, Fairhead S, Jouet A, Ortiz D, Ravel S, Shrestha RK, Frouin J, He X, Zhu Y, Morel JB, Huang H, Kroj T, Jones JDG. Extensive immune receptor repertoire diversity in disease-resistant rice landraces. Curr Biol 2024; 34:3983-3995.e6. [PMID: 39146939 DOI: 10.1016/j.cub.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Plants have powerful defense mechanisms and extensive immune receptor repertoires, yet crop monocultures are prone to epidemic diseases. Rice (Oryza sativa) is susceptible to many diseases, such as rice blast caused by Magnaporthe oryzae. Varietal resistance of rice to blast relies on intracellular nucleotide binding, leucine-rich repeat (NLR) receptors that recognize specific pathogen molecules and trigger immune responses. In the Yuanyang terraces in southwest China, rice landraces rarely show severe losses to disease whereas commercial inbred lines show pronounced field susceptibility. Here, we investigate within-landrace NLR sequence diversity of nine rice landraces and eleven modern varieties using complexity reduction techniques. We find that NLRs display high sequence diversity in landraces, consistent with balancing selection, and that balancing selection at NLRs is more pervasive in landraces than modern varieties. Notably, modern varieties lack many ancient NLR haplotypes that are retained in some landraces. Our study emphasizes the value of standing genetic variation that is maintained in farmer landraces as a resource to make modern crops and agroecosystems less prone to disease. The conservation of landraces is, therefore, crucial for ensuring food security in the face of dynamic biotic and abiotic threats.
Collapse
Affiliation(s)
- Pierre Gladieux
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Agathe Jouet
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Diana Ortiz
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Sebastien Ravel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France; UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Xiahong He
- School of Landscape and Horticulture, Southwest Forestry University, Kunming 650233, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China
| | - Jean-Benoit Morel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China.
| | - Thomas Kroj
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. EMBO Rep 2024; 25:2306-2322. [PMID: 38528170 PMCID: PMC11093987 DOI: 10.1038/s44319-024-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Morales-Cruz A, Aguirre-Liguori J, Massonnet M, Minio A, Zaccheo M, Cochetel N, Walker A, Riaz S, Zhou Y, Cantu D, Gaut BS. Multigenic resistance to Xylella fastidiosa in wild grapes (Vitis sps.) and its implications within a changing climate. Commun Biol 2023; 6:580. [PMID: 37253933 DOI: 10.1038/s42003-023-04938-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives. There is little understanding of the genes that contribute to plant resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (Vitis vinifera) are not resistant to the bacterium. Here we study a wild grapevine species, V. arizonica, that segregates for resistance. Using genome-wide association, we identify candidate resistance genes. Resistance-associated kmers are shared with a sister species of V. arizonica but not with more distant species, suggesting that resistance evolved more than once. Finally, resistance is climate dependent, because individuals from low ( < 10 °C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in colder climates. In fact, climate is as effective a predictor of resistance phenotypes as some genetic markers. We extend our climate observations to additional crops, predicting that increased pathogen pressure is more likely for grapevines and almonds than some other susceptible crops.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Jonas Aguirre-Liguori
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Mélanie Massonnet
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Andrea Minio
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Mirella Zaccheo
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Noe Cochetel
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Andrew Walker
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Summaira Riaz
- San Joaquin Valley Agricultural Center, United States Dept of Agriculture, Parlier, CA, USA
| | - Yongfeng Zhou
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Agricultural Genomics Institute at Shenzhen, The Chinese Academy of Agricultural Sciences, No. 7 Pengfei Road, Shenzen, 518120, China.
| | - Dario Cantu
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA.
- Dept. of Viticulture and Enology, One Shields Avenue, University of California Davis, Davis, CA, 95616-5270, USA.
| | - Brandon S Gaut
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
- Dept. of Ecology and Evolutionary Biology, 321 Steinhaus Hall UC Irvine, Irvine, CA, 92617-2525, USA.
| |
Collapse
|
4
|
Meile L, Garrido-Arandia M, Bernasconi Z, Peter J, Schneller A, Bernasconi A, Alassimone J, McDonald BA, Sánchez-Vallet A. Natural variation in Avr3D1 from Zymoseptoria sp. contributes to quantitative gene-for-gene resistance and to host specificity. THE NEW PHYTOLOGIST 2023; 238:1562-1577. [PMID: 36529883 DOI: 10.1111/nph.18690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Successful host colonization by plant pathogens requires the circumvention of host defense responses, frequently through sequence modifications in secreted pathogen proteins known as avirulence factors (Avrs). Although Avr sequences are often polymorphic, the contribution of these polymorphisms to virulence diversity in natural pathogen populations remains largely unexplored. We used molecular genetic tools to determine how natural sequence polymorphisms of the avirulence factor Avr3D1 in the wheat pathogen Zymoseptoria tritici contributed to adaptive changes in virulence. We showed that there is a continuous distribution in the magnitude of resistance triggered by different Avr3D1 isoforms and demonstrated that natural variation in an Avr gene can lead to a quantitative resistance phenotype. We further showed that homologues of Avr3D1 in two nonpathogenic sister species of Z. tritici are recognized by some wheat cultivars, suggesting that Avr-R gene-for-gene interactions can contribute to nonhost resistance. We suggest that the mechanisms underlying host range, qualitative resistance, and quantitative resistance are not exclusive.
Collapse
Affiliation(s)
- Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Garrido-Arandia
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - Zoe Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Jules Peter
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Alissa Schneller
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
5
|
Cappelli SL, Domeignoz-Horta LA, Loaiza V, Laine AL. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. TRENDS IN PLANT SCIENCE 2022; 27:674-687. [PMID: 35279365 DOI: 10.1016/j.tplants.2022.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
While the positive relationship between plant biodiversity and ecosystem functioning (BEF) is well established, the extent to which this is mediated via belowground microbial processes is poorly understood. Growing evidence suggests that plant community structure influences soil microbial diversity, which in turn promotes functions desired for sustainable agriculture. Here, we outline the 'plant-directed' and soil microbe-mediated mechanisms expected to promote positive BEF. We identify how this knowledge can be utilized in plant diversification schemes to maximize ecosystem functioning in agroecosystems, which are typically species poor and sensitive to biotic and abiotic stressors. In the face of resource overexploitation and global change, bridging the gaps between biodiversity science and agricultural practices is crucial to meet food security in the Anthropocene.
Collapse
Affiliation(s)
- Seraina L Cappelli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Luiz A Domeignoz-Horta
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Viviana Loaiza
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Sork VL, Cokus SJ, Fitz-Gibbon ST, Zimin AV, Puiu D, Garcia JA, Gugger PF, Henriquez CL, Zhen Y, Lohmueller KE, Pellegrini M, Salzberg SL. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nat Commun 2022; 13:2047. [PMID: 35440538 PMCID: PMC9018854 DOI: 10.1038/s41467-022-29584-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.
Collapse
Affiliation(s)
- Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Aleksey V Zimin
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse A Garcia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Steven L Salzberg
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
7
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
8
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
9
|
Kahlon PS, Stam R. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102040. [PMID: 33882435 DOI: 10.1016/j.pbi.2021.102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Genetic polymorphisms are the basis of the natural diversity seen in all life on earth, also in plant-pathogen interactions. Initially, studies on plant-pathogen interaction focused on reporting phenotypic variation in resistance properties and on the identification of underlying major genes. Nowadays, the field of plant-pathogen interactions is moving from focusing on families of single dominant genes involved in gene-for-gene interactions to an understanding of the plant immune system in the context of a much more complex signaling network and quantitative resistance. Simultaneously, studies on pathosystems from the wild and genome analyses advanced, revealing tremendous variation in natural plant populations. It is now imperative to place studies on genetic diversity and evolution of plant-pathogen interactions in the appropriate molecular biological, as well as evolutionary, context.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Remco Stam
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany.
| |
Collapse
|
10
|
Wuest SE, Peter R, Niklaus PA. Ecological and evolutionary approaches to improving crop variety mixtures. Nat Ecol Evol 2021; 5:1068-1077. [PMID: 34211140 DOI: 10.1038/s41559-021-01497-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Variety mixtures can provide a range of benefits for both the crop and the environment. Their utility for the suppression of pathogens, especially in small grain crops, is well established and has seen some remarkable successes. However, despite decades of academic interest in the topic, commercial efforts to develop, release and promote variety mixtures remain peripheral to normal breeding activities. Here we argue that this is because simple but general design principles that allow for the optimization of multiple mixture benefits are currently lacking. We therefore review the practical and conceptual challenges inherent in the development of variety mixtures, and discuss common approaches to overcome these. We further consider three domains in which they might be particularly beneficial: pathogen resistance, yield stability and yield enhancement. We demonstrate that combining evolutionary and ecological concepts with data typically available from breeding and variety testing programmes could make mixture development easier and more economic. Identifying synergies between the breeding for monocultures and mixtures may even be key to the widespread adoption of mixtures-to the profit of breeders, farmers and society as a whole.
Collapse
Affiliation(s)
- Samuel E Wuest
- Group Breeding Research, Division Plant Breeding, Agroscope, Wädenswil, Switzerland.
| | - Roland Peter
- Division Plant Breeding, Agroscope, Zurich, Switzerland
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|