1
|
Jinshi Z, Mei L, Jinjin L, Weilin Z. Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics 2024; 25:1036. [PMID: 39501148 PMCID: PMC11536790 DOI: 10.1186/s12864-024-10940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Nilaparvata lugens is one of the most destructive pests of rice. RNAi-based N. lugens control offers one alternative strategy to traditional chemical insecticides. However, selection of potential target for RNAi against N. lugens remains a major challenge. Only two target genes for nuclear transgenic N. lugens-resistant plants have been screened. Importantly, only one or few potential target genes against N. lugens were screened every time by knowledge of essential genes from model organisms in previous study. RESULTS Here, in silico genome-wide selection of potential target genes against N. lugens through homology comparison was performed. Through genome synteny comparisons, about 3.5% of Drosophila melanogaster genome was found to have conserved genomic synteny with N. lugens genome. By using N. lugens proteins to search D. melanogaster homologs defining lethal or sterile phenotype, 358 N. lugens genes were first screened as putative target genes. Transgenic rice lines expressing dsRNA of randomly selected gene (NlRan or NlSRP54) from 358 putative target genes enhanced resistance to N. lugens. After expression check and safety check, 115 N. lugens genes were screened as potential target candidates. CONCLUSION The combined efforts in this study firstly provide one in silico genome-wide homology-based screening approach for RNAi-based target genes against N. lugens, which not only offer one new opportunity to batch select potential target candidates in pests of interest, but also will facilitate the selection of RNAi target in many pest species by providing more than one hundred potential target candidates.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Li Mei
- Analysis Center of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
2
|
Zhang C, Zhang JY, Wang N, Abou El-Ela AS, Shi ZY, You YZ, Ali SA, Zhou WW, Zhu ZR. RNAi-mediated knockdown of papilin gene affects the egg hatching in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4779-4789. [PMID: 38837578 DOI: 10.1002/ps.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Owing to the rapid adaptation of BPH to many pesticides and resistant varieties, identifying putative gene targets for developing RNA interference (RNAi)-based pest management strategies has received much attention for this pest. The glucoprotein papilin is the most abundant component in the basement membranes of many organisms, and its function is closely linked to development. RESULTS In this study, we identified a papilin homologous gene in BPH (NlPpn). Quantitative Real-time PCR analysis showed that the transcript of NlPpn was highly accumulated in the egg stage. RNAi of NlPpn in newly emerged BPH females caused nonhatching phenotypes of their eggs, which may be a consequence of the maldevelopment of their embryos. Moreover, the transcriptomic analysis identified 583 differentially expressed genes between eggs from the dsGFP- and dsNlPpn-treated insects. Among them, the 'structural constituent of cuticle' cluster ranked first among the top 15 enriched GO terms. Consistently, ultrastructural analysis unveiled that dsNlPpn-treated eggs displayed a discrete and distorted serosal endocuticle lamellar structure. Furthermore, the hatchability of BPH eggs was also successfully reduced by the topical application of NlPpn-dsRNA-layered double hydroxide nanosheets onto the adults. CONCLUSION Our findings demonstrate that NlPpn is essential to maintaining the regular structure of the serosal cuticle and the embryonic development in BPH, indicating NlPpn could be a potential target for pest control during the egg stage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jin-Yi Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yuan-Zheng You
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
3
|
Jiang C, Fu J, Li F, Xia K, Li S, Chang L, Bock R, Zhang J. Plastid engineering with an efficient RNAi delivery system based on bacteriophage MS2 virus-like particles enhances plant resistance to cotton bollworm. MOLECULAR PLANT 2024; 17:987-989. [PMID: 38835168 DOI: 10.1016/j.molp.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Chunmei Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Fujun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Kai Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
4
|
Deng P, Peng Y, Sheng Z, Li W, Liu Y. RNAi silencing CHS1 gene shortens the mortality time of Plutella xylostella feeding Bt-transgenic Brassica napus. PEST MANAGEMENT SCIENCE 2024; 80:2610-2618. [PMID: 38252693 DOI: 10.1002/ps.7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Insect-resistance genetically modified (GM) plants derived from Bacillus thuringiensis (Bt) have been cultivated to control pests, but continuous cultivation of Bt-transgenic plants at large-scale regions leads to the resistance evolution of target insects to transgenic plants. RNA interference (RNAi) technology is considered an effective strategy in delaying the resistance evolution of target insects. RESULTS We here developed a single transgenic oilseed rape (Brassica napus) line with hairpin RNA of the chitin-synthase 1 gene (CHS1) of Plutella xylostella (hpPxCHS1) and a pyramid transgenic B. napus line harboring hpPxCHS1 and Bt gene (Cry1Ac). Escherichia coli HT115 delivered hpPxCHS1 showed negative effects on the growth of P. xylostella. The single transgenic and pyramid transgenic B. napus significantly reduced the larval weight and length of P. xylostella and increased its lethality rate, with down-regulation expression of the PxCHS1 gene in insects. CONCLUSION Compared to Bt-transgenic B. napus, pyramid-transgenic B. napus shorted the mortality time of P. xylostella, indicating that RNAi technology synergistic with Bt protein improves the effectiveness of controlling target insects. Our results proved that RNAi can delay the resistance evolution of target insects to Bt-transgenic plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Purong Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yujia Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhilu Sheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wencui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
5
|
Gong C, Guo Z, Hu Y, Yang Z, Xia J, Yang X, Xie W, Wang S, Wu Q, Ye W, Zhou X, Turlings TCJ, Zhang Y. A Horizontally Transferred Plant Fatty Acid Desaturase Gene Steers Whitefly Reproduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306653. [PMID: 38145364 PMCID: PMC10933598 DOI: 10.1002/advs.202306653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.
Collapse
Affiliation(s)
- Cheng Gong
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Yuan Hu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zezhong Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Institute of Plant ProtectionTianjin Academy of Agricultural SciencesTianjin300381China
| | - Jixing Xia
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xin Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wen Xie
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Shaoli Wang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Qingjun Wu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Xuguo Zhou
- Department of EntomologyUniversity of KentuckyLexingtonKY40546‐0091USA
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
6
|
Li F, Tian J, Di Z, Qu C, Fu Y, Yang S, Luo C. Orco mediates olfactory behavior and oviposition in the whitefly Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105773. [PMID: 38458680 DOI: 10.1016/j.pestbp.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.
Collapse
Affiliation(s)
- Fengqi Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jiahui Tian
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zhongjuan Di
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Shiyong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China.
| | - Chen Luo
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
7
|
Feng H, Chen W, Hussain S, Shakir S, Tzin V, Adegbayi F, Ugine T, Fei Z, Jander G. Horizontally transferred genes as RNA interference targets for aphid and whitefly control. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:754-768. [PMID: 36577653 PMCID: PMC10037149 DOI: 10.1111/pbi.13992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.
Collapse
Affiliation(s)
| | - Wenbo Chen
- Boyce Thompson InstituteIthacaNYUSA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Sonia Hussain
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied SciencesFaisalabadPakistan
| | - Sara Shakir
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Gembloux Agro‐Bio Tech InstituteThe University of LiegeGemblouxBelgium
| | - Vered Tzin
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSede BoqerIsrael
| | - Femi Adegbayi
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Drexel University College of MedicinePhiladelphiaPAUSA
| | - Todd Ugine
- Department of EntomologyCornell UniversityIthacaNYUSA
| | | | | |
Collapse
|
8
|
Lu JB, Wang SN, Ren PP, He F, Li Q, Chen JP, Li JM, Zhang CX. RNAi-mediated silencing of an egg-specific gene Nllet1 results in hatch failure in the brown planthopper. PEST MANAGEMENT SCIENCE 2023; 79:415-427. [PMID: 36177946 DOI: 10.1002/ps.7210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The brown planthopper (BPH) is one of the most destructive agricultural pests in Asia. RNA interference (RNAi)-mediated pest management has been under development for years, and the selection of appropriate target genes is important for pest-targeted RNAi. C-type lectins (CTLs) are a class of genes that perform a variety of functions, such as the regulation of growth and development. RESULTS A CTL-S protein named Nllet1, containing a single calcium ion (Ca2+ )-dependent carbohydrate-binding domain (CRD) with a conserved triplet motif QPD was identified and functionally characterized in BPH. Expression profiles at both the transcriptional and translational levels show that Nllet1 accumulates during the serosal cuticle (SC) formation period. Immunofluorescence and immunogold labeling further demonstrated that Nllet1 is located in the serosal endocuticle (en-SC). Maternal RNAi-mediated silencing of Nllet1 disrupted the SC structure, accompanied by a loss of the outward barrier and 100% embryo mortality. Injection of 10 ng dsNllet1 or dsNllet1' per female adult BPH resulted in a total failure of egg hatching. CONCLUSION Nllet1 is essential for SC formation and embryonic development in BPH, which helps us understand the important roles of CTL-Ss. Additionally, BPH eggs show high sensitivity to the depletion of Nllet1. This study indicates that Nllet1 is a promising candidate gene that can be used to develop RNAi-based control strategies at the BPH egg stage, and it can also be used as a target for developing novel ovicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiao Li
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Sun Y, Gong Y, He Q, Kuang S, Gao Q, Ding W, He H, Xue J, Li Y, Qiu L. FAR knockout significantly inhibits Chilo suppressalis survival and transgene expression of double-stranded FAR in rice exhibits strong pest resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2272-2283. [PMID: 36028465 PMCID: PMC9674317 DOI: 10.1111/pbi.13906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/04/2022] [Accepted: 07/30/2022] [Indexed: 05/05/2023]
Abstract
Chilo suppressalis is one of the most prevalent and damaging rice pests, causing significant economic losses each year. Chemical control is currently the primary method of controlling C. suppressalis. However, the indiscriminate use of chemical insecticides increases pest resistance, pollutes the environment and poses a significant health threat to humans and livestock, highlighting the need to find safer, more pest-specific and more effective alternatives to pest control. Plant-mediated RNA interference (RNAi) is a promising agricultural pest control method that is highly pest-specific and has less of an impact on the environment. Using multi-sgRNAs/Cas9 technology to delete Fatty acyl-CoA reductase (FAR) of C. suppressalis in the G0 generation, we show that downregulating FAR transcription may significantly increase the mortality rate and darken the epidermis of C. suppressalis compared with the control. Subsequently, we developed dsFAR transgenic rice lines using Agrobacterium-mediated genetic transformation and then screened three strains expressing dsFAR at high levels using transcriptional level analysis. Using transgenic rice stems, a laboratory feeding bioassay indicated that at least one line (L#10) displayed a particularly high level of insect resistance, with an insect mortality rate of more than 80%. In the field trials, dsFAR transgenic rice displayed high levels of resistance to C. suppressalis damage. Collectively, these results suggest the potential of a new environment-friendly, species-specific strategy for rice pest management.
Collapse
Affiliation(s)
- Yingjuan Sun
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Youwei Gong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Qingzhen He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Suijie Kuang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional IngredientsHunan Agricultural UniversityChangshaChina
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation ProcessingChangshaChina
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
- National Research Center of Engineering & Technology for Utilization of Botanical Functional IngredientsHunan Agricultural UniversityChangshaChina
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| |
Collapse
|
10
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
11
|
Zhang Y, Liu X, Francis F, Xie H, Fan J, Wang Q, Liu H, Sun Y, Chen J. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2187-2201. [PMID: 35984895 PMCID: PMC9616526 DOI: 10.1111/pbi.13900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 05/04/2023]
Abstract
Aphids secrete diverse repertoires of salivary effectors into host plant cells to promote infestation by modulating plant defence. The greenbug Schizaphis graminum is an important cereal aphid worldwide. However, the secreted effectors of S. graminum are still uncharacterized. Here, 76 salivary proteins were identified from the watery saliva of S. graminum using transcriptome and proteome analyses. Among them, a putative salivary effector Sg2204 was significantly up-regulated during aphid feeding stages, and transient overexpression of Sg2204 in Nicotiana benthamiana inhibited cell death induced by BAX or INF1. Delivering Sg2204 into wheat via the type III secretion system of Pseudomonas fluorescens EtAnH suppressed pattern-triggered immunity (PTI)-associated callose deposition. The transcript levels of jasmonic acid (JA)- and salicylic acid (SA)-associated defence genes of wheat were significantly down-regulated, and the contents of both JA and SA were also significantly decreased after delivery of Sg2204 into wheat leaves. Additionally, feeding on wheat expressing Sg2204 significantly increased the weight and fecundity of S. graminum and promoted aphid phloem feeding. Sg2204 was efficiently silenced via spray-based application of the nanocarrier-mediated transdermal dsRNA delivery system. Moreover, Sg2204-silenced aphids induced a stronger wheat defence response and resulted in negative impacts on aphid feeding behaviour, survival and fecundity. Silencing of Sg2204 homologues from four aphid species using nanocarrier-delivered dsRNA also significantly reduced aphid performance on host plants. Thus, our study characterized the salivary effector Sg2204 of S. graminum involved in promoting host susceptibility by suppressing wheat defence, which can also be regarded as a promising RNAi target for aphid control.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Haicui Xie
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyQinhuangdao CityChina
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyQinhuangdao CityChina
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
13
|
Haj Darwich CM, Chrzanowski MM, Bernatowicz PP, Polanska MA, Joachimiak E, Bebas P. Molecular Oscillator Affects Susceptibility of Caterpillars to Insecticides: Studies on the Egyptian Cotton Leaf Worm- Spodoptera littoralis (Lepidoptera: Noctuidae). INSECTS 2022; 13:insects13050488. [PMID: 35621821 PMCID: PMC9147166 DOI: 10.3390/insects13050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The molecular oscillator is the core of the biological clock and is formed by genes and proteins whose cyclic expression is regulated in the transcriptional-translational feedback loops (TTFLs). Proteins of the TTFLs are regulators of both their own and executive genes involved in the control of many processes in insects (e.g., rhythmic metabolism of xenobiotics, including insecticides). We disrupted the clock operation in S. littoralis larvae by injecting the dsRNA of clock genes into their body cavity and culturing the larvae under continuous light. As a result, the daily susceptibility of larvae to insecticides was abolished and the susceptibility itself increased (in most cases). In the fat body, midgut, and Malpighian tubules (the main organs metabolizing xenobiotics) of the larvae treated with injected-dsRNA, the daily activity profiles of enzymes involved in detoxification-cytochrome P450 monooxygenases, Glutathione-S-transferase, and esterase-have changed significantly. The presented results prove the role of the molecular oscillator in the regulation of larvae responses to insecticides and provide grounds for rational use of these compounds (at suitable times of the day), and may indicate clock genes as potential targets of molecular manipulation to produce plant protection compounds based on the RNAi method.
Collapse
Affiliation(s)
- Choukri M. Haj Darwich
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marcin M. Chrzanowski
- Biology Teaching Laboratory, Faculty’s Independent Centers, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Piotr P. Bernatowicz
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Piotr Bebas
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
- Correspondence: ; Tel.: +48-22-554-1030
| |
Collapse
|
14
|
Marin FR, Dávalos A, Kiltschewskij D, Crespo MC, Cairns M, Andrés-León E, Soler-Rivas C. RNA-Seq, Bioinformatic Identification of Potential MicroRNA-like Small RNAs in the Edible Mushroom Agaricus bisporus and Experimental Approach for Their Validation. Int J Mol Sci 2022; 23:4923. [PMID: 35563314 PMCID: PMC9100230 DOI: 10.3390/ijms23094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco R. Marin
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Maria C. Crespo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López Neyra”, Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Gong C, Yang Z, Hu Y, Wu Q, Wang S, Guo Z, Zhang Y. Silencing of the BtTPS genes by transgenic plant-mediated RNAi to control Bemisia tabaci MED. PEST MANAGEMENT SCIENCE 2022; 78:1128-1137. [PMID: 34796637 DOI: 10.1002/ps.6727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Whitefly (Bemisia tabaci) is a typical pest that causes severe damage to hundreds of agricultural crops. The trehalose-6-phosphate synthase (TPS) genes, as the key genes in the insect trehalose synthesis pathway, are important for insect growth and development. The whitefly TPS genes may be a main reason for the severe damage and may represent potential targets for the control of whiteflies. RESULTS In this study, we identified and cloned three TPS genes from B. tabaci MED and found that the BtTPS1 and BtTPS2 genes showed higher expression levels than the BtTPS3 gene. Then, RNA interference (RNAi) of BtTPS1 and BtTPS2 resulted in significant mortality and influenced the expression of related genes involved in energy metabolism and chitin biosynthesis in whitefly adults. Finally, the transgenic tobacco plants showed a significant effect on B. tabaci, and knockdown of BtTPS1 or BtTPS2 led to retarded growth and low hatchability in whitefly nymphs, and caused 90% mortality and decreased the fecundity in whitefly adults. Additionally, the transgenic tobacco with combinatorial RNAi of BtTPS1 and BtTPS2 showed a better efficacy against whiteflies than individual silencing. CONCLUSION Our results suggest that silencing of the BtTPS genes can compromise the growth and development of whiteflies, offering not only a new option for whitefly control but also a secure and environmentally friendly management strategy.
Collapse
Affiliation(s)
- Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Zheng Y, Wang L, Xu L, Li Y, Yang X, Yang Z, Li L, Ding M, Ren S, Gong F, Chang J, Cao C, Wen Y, Li L, Liu G. Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants. Analyst 2022; 147:2452-2459. [DOI: 10.1039/d2an00366j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.
Collapse
Affiliation(s)
- Yu Zheng
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Lele Wang
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Li Xu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Yan Li
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Xue Yang
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Zhenzhou Yang
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Lanying Li
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Min Ding
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Shuzhen Ren
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Feiyan Gong
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Jinxue Chang
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Chengming Cao
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
17
|
Chatterjee M, Yadav J, Rathinam M, Karthik K, Chowdhary G, Sreevathsa R, Rao U. Amenability of Maruca vitrata (Lepidoptera: Crambidae) to gene silencing through exogenous administration and host-delivered dsRNA in pigeonpea ( Cajanus cajan L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:189-202. [PMID: 35221579 PMCID: PMC8847478 DOI: 10.1007/s12298-022-01133-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 05/13/2023]
Abstract
UNLABELLED Insect pests are one of the major biotic stresses limiting yield in commercially important crops. The lepidopteran polyphagous spotted pod borer, Maruca vitrata causes significant economic losses in legumes including pigeonpea. RNA interference (RNAi)-based gene silencing has emerged as one of the potential biotechnological tools for crop improvement. We report in this paper, RNAi in M. vitrata through exogenous administration of dsRNA with sequence specificity to three functionally important genes, Alpha-amylase (α-amylase), Chymotrypsin-like serine protease (CTLP) and Tropomyosin (TPM) into the larval haemolymph and their host-delivered RNAi in pigeonpea. Significant decline in the expression of selected genes supported by over-expression of DICER and generation of siRNA indicated the occurrence of RNAi in the dsRNA-injected larvae. Additionally, the onset of RNAi in the herbivore was demonstrated in pigeonpea, one of the prominent hosts, by host-delivered dsRNA. Transgenics in pigeonpea (cv. Pusa 992), a highly recalcitrant crop, were developed through a shoot apical meristem-targeted in planta transformation strategy and evaluated. Plant level bioassays in transgenic events characterized and selected at molecular level showed mortality of M. vitrata larvae as well as reduced feeding when compared to wild-type. Furthermore, molecular evidence for down regulation of target genes in the insects that fed on transgenic plants authenticated RNAi. Considering the variability of gene silencing in lepidopteran pests, this study provided corroborative proof for the possibility of gene silencing in M. vitrata through both the strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01133-3.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Jyoti Yadav
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Gopal Chowdhary
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Wu Y, Huang Y, Jian J. HMG20A from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:499-507. [PMID: 34687883 DOI: 10.1016/j.fsi.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
High-mobility group 20 A (HMG20A) has important biological functions, such as inhibiting the differentiation of red blood cells and nerve cells, promoting the proliferation and metastasis of cancer cells, and regulating inflammatory reaction. However, the role of HMG20A in the response to bacterial infection in the economic fish Nile tilapia (Oreochromis niloticus) remains unclear. In this study, a HMG20A homolog was successfully identified and characterized from Nile tilapia (On-HMG20A), and its expression model and biological effects on bacterial infection were analyzed. The open reading frame (ORF) of On-HMG20A was 876 bp in length, which encoded 291 amino acids and possessed a HMG domain (High mobility group domains) and coiled coil region. Results of the expression model showed that On-HMG20A was widely distributed in immune-related tissues of healthy tilapia and upregulated in a time-dependent manner after being challenged by Streptococcus agalactiae. Meanwhile, knocking down the expression of On-HMG20A can reduce the inflammatory response of tilapia and the degree of tissue damage caused by S. agalactiae. Moreover, knocking down the expression of On-HMG20A can reduce the bacterial load of tilapia tissues after being challenged by S. agalactiae and improve the survival rate. Collectively, these results showed that On-HMG20A may be related to the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
19
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
20
|
Ahmad S, Jamil M, Fahim M, Zhang S, Ullah F, Lyu B, Luo Y. RNAi-Mediated Knockdown of Imaginal Disc Growth Factors (IDGFs) Genes Causes Developmental Malformation and Mortality in Melon Fly, Zeugodacus cucurbitae. Front Genet 2021; 12:691382. [PMID: 34290744 PMCID: PMC8287652 DOI: 10.3389/fgene.2021.691382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
This study reports the first successful use of oral feeding dsRNA technique for functional characterization of imaginal disc growth factors (IDGFs) genes (IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6) in melon fly Zeugodacus cucurbitae. Phylogenetic and domain analysis indicates that these genes had high similarity with other Tephritidae fruit flies homolog and contain only one conserved domain among these five genes, which is glyco-18 domain (glyco-hydro-18 domain). Gene expression analysis at different developmental stages revealed that these genes were expressed at larval, pupal, and adult stages. To understand their role in different developmental stages, larvae were fed dsRNA-corresponding to each of the five IDGFs, in an artificial diet. RNAi-mediated knockdown of IDGF1 shows no phenotypic effects but caused mortality (10.4%), while IDGF4_0 caused malformed pharate at the adult stage where insects failed to shed their old cuticle and remained attached with their body, highest mortality (49.2%) was recorded compared to dsRNA-green fluorescent protein (GFP) or DEPC. Silencing of IDGF3_1 and IDGF4_1 cause lethal phenotype in larvae, (17.2%) and (40%) mortality was indexed in Z. cucurbitae. IDGF6 was mainly expressed in pupae and adult stages, and its silencing caused a malformation in adult wings. The developmental defects such as malformation in wings, larval–larval lethality, pupal–adult malformation, and small body size show that IDGFs are key developmental genes in the melon fly. Our results provide a baseline for the melon fly management and understanding of IDGFs specific functions in Z. cucurbitae.
Collapse
Affiliation(s)
- Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Momana Jamil
- School of Plant Protection, Hainan University, Haikou, China
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar, Pakistan
| | - Shujing Zhang
- School of Plant Protection, Hainan University, Haikou, China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|