1
|
Jaćimović S, Kiprovski B, Ristivojević P, Dimić D, Nakarada Đ, Dojčinović B, Sikora V, Teslić N, Pantelić NĐ. Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. Antioxidants (Basel) 2023; 12:1485. [PMID: 37627480 PMCID: PMC10451854 DOI: 10.3390/antiox12081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Sorghum grain (Sorghum bicolor L. Moench) is a gluten-free cereal with excellent nutritional value and is a good source of antioxidants, including polyphenols, as well as minerals with proven health benefits. Herein, the phenolic composition, elemental profile, and antioxidant activity of sixteen food-grade sorghum grains (S1-S16) grown under agroecological conditions in Serbia were determined. Nine phenolic compounds characteristic of sorghum grains, such as luteolinidin, 5-methoxyluteolinidin, luteolidin derivative, luteolidin glucoside, apigeninidin, 7-methoxyapigeninidin, apigeninidin glucoside, and cyanidin derivative, were quantified. The antioxidant potential of the analyzed sorghum grains was evaluated by UV/Vis (DPPH, ABTS, and FRAP) and Electron Paramagnetic Resonance spectroscopy (hydroxyl and ascorbyl radical scavenging assays). The content of macro- and microelements was determined by Inductively Coupled Plasma Optical Emission spectroscopy. Theoretical daily intakes of selected major and trace elements were assessed and compared with the Recommended Daily Allowance or Adequate Intake. Sample S8 had the highest amount of phenolic compounds, while S4, S6, and S8 exhibited the strongest antioxidative potential. The sorghum studied could completely satisfy the daily needs of macro- (K, Mg, and P) and microelements (Se, Zn, Fe). Pattern recognition techniques confirmed the discrimination of samples based on phenolic profile and elemental analysis and recognized the main markers responsible for differences between the investigated samples. The reaction between hydroxyl radicals and luteolinidin/apigeninidin was investigated by Density Functional Theory and thermodynamically preferred mechanism was determined.
Collapse
Affiliation(s)
- Simona Jaćimović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (B.K.); (V.S.)
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (B.K.); (V.S.)
| | - Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.); (Đ.N.)
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.); (Đ.N.)
| | - Biljana Dojčinović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia;
| | - Vladimir Sikora
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (B.K.); (V.S.)
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Nebojša Đ. Pantelić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
3
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
4
|
Herdman M, von Kügelgen A, Kureisaite-Ciziene D, Duman R, El Omari K, Garman EF, Kjaer A, Kolokouris D, Löwe J, Wagner A, Stansfeld PJ, Bharat TAM. High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure 2021; 30:215-228.e5. [PMID: 34800371 PMCID: PMC8828063 DOI: 10.1016/j.str.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022]
Abstract
Surface layers (S-layers) are proteinaceous crystalline coats that constitute the outermost component of most prokaryotic cell envelopes. In this study, we have investigated the role of metal ions in the formation of the Caulobacter crescentus S-layer using high-resolution structural and cell biology techniques, as well as molecular simulations. Utilizing optical microscopy of fluorescently tagged S-layers, we show that calcium ions facilitate S-layer lattice formation and cell-surface binding. We report all-atom molecular dynamics simulations of the S-layer lattice, revealing the importance of bound metal ions. Finally, using electron cryomicroscopy and long-wavelength X-ray diffraction experiments, we mapped the positions of metal ions in the S-layer at near-atomic resolution, supporting our insights from the cellular and simulations data. Our findings contribute to the understanding of how C. crescentus cells form a regularly arranged S-layer on their surface, with implications on fundamental S-layer biology and the synthetic biology of self-assembling biomaterials. Live imaging shows Ca2+-dependent expansion of the C. crescentus S-layer Molecular simulations reveal Ca2+-binding properties of the S-layer Ca2+ ion mapping in three-dimensional crystals using in-vacuum X-ray anomalous diffraction Ca2+ replacement by Ho3+ allows cryo-EM mapping of heavy metals
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | - Ramona Duman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andreas Kjaer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jan Löwe
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
de Jesus JM, Costa C, Burton A, Palitsin V, Webb R, Taylor A, Nikula C, Dexter A, Kaya F, Chambers M, Dartois V, Goodwin RJA, Bunch J, Bailey MJ. Correlative Imaging of Trace Elements and Intact Molecular Species in a Single-Tissue Sample at the 50 μm Scale. Anal Chem 2021; 93:13450-13458. [PMID: 34597513 DOI: 10.1021/acs.analchem.1c01927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Elemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence. In this work, we highlight some of the challenges and successes associated with performing elemental mapping in sequence with mass spectrometry imaging. Specifically, the feasibility of molecular mapping using the mass spectrometry imaging (MSI) techniques matrix-assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) in sequence with the elemental mapping technique particle-induced X-ray emission (PIXE) is explored. Challenges for integration include substrate compatibility, as well as delocalization and spectral changes. We demonstrate that while sequential imaging comes with some compromises, sequential DESI-PIXE imaging is sufficient to correlate sulfur, iron, and lipid markers in a single tissue section at the 50 μm scale.
Collapse
Affiliation(s)
| | - Catia Costa
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Amy Burton
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Vladimir Palitsin
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Roger Webb
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Adam Taylor
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Chelsea Nikula
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Alex Dexter
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Firat Kaya
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark 07102, United States
| | - Mark Chambers
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack School of Medicine, Nutley, New Jersey 07110, United States.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark 07102, United States
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge CB2 0AA U.K.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Josephine Bunch
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Melanie J Bailey
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
6
|
Costa IM, Cheng J, Osytek KM, Imberti C, Terry SYA. Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides. Nucl Med Biol 2021; 98-99:18-29. [PMID: 33964707 PMCID: PMC7610823 DOI: 10.1016/j.nucmedbio.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and β- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.
Collapse
Affiliation(s)
- Ines M Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Katarzyna M Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Cinzia Imberti
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
7
|
Pounot K, Grime GW, Longo A, Zamponi M, Noferini D, Cristiglio V, Seydel T, Garman EF, Weik M, Foderà V, Schirò G. Zinc determines dynamical properties and aggregation kinetics of human insulin. Biophys J 2021; 120:886-898. [PMID: 33545104 DOI: 10.1016/j.bpj.2020.11.2280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation is a widespread process leading to deleterious consequences in the organism, with amyloid aggregates being important not only in biology but also for drug design and biomaterial production. Insulin is a protein largely used in diabetes treatment, and its amyloid aggregation is at the basis of the so-called insulin-derived amyloidosis. Here, we uncover the major role of zinc in both insulin dynamics and aggregation kinetics at low pH, in which the formation of different amyloid superstructures (fibrils and spherulites) can be thermally induced. Amyloid aggregation is accompanied by zinc release and the suppression of water-sustained insulin dynamics, as shown by particle-induced x-ray emission and x-ray absorption spectroscopy and by neutron spectroscopy, respectively. Our study shows that zinc binding stabilizes the native form of insulin by facilitating hydration of this hydrophobic protein and suggests that introducing new binding sites for zinc can improve insulin stability and tune its aggregation propensity.
Collapse
Affiliation(s)
- Kevin Pounot
- Applied Physics, University of Tübingen, Tübingen, Baden-Würtemberg, Germany.
| | | | - Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| | - Michaela Zamponi
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH Outstation at MLZ, Garching, Germany
| | - Daria Noferini
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH Outstation at MLZ, Garching, Germany
| | | | - Tilo Seydel
- Science Division, Institut Max von Laue-Paul Langevin, Grenoble, France
| | | | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Vito Foderà
- Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Utilization of Si wafers as a supporting material for in-vacuum PIXE analysis of aqueous solutions. Appl Radiat Isot 2020; 160:109122. [DOI: 10.1016/j.apradiso.2020.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/23/2022]
|
9
|
Grime GW, Zeldin OB, Snell ME, Lowe ED, Hunt JF, Montelione GT, Tong L, Snell EH, Garman EF. High-Throughput PIXE as an Essential Quantitative Assay for Accurate Metalloprotein Structural Analysis: Development and Application. J Am Chem Soc 2019; 142:185-197. [PMID: 31794207 DOI: 10.1021/jacs.9b09186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metalloproteins comprise over one-third of proteins, with approximately half of all enzymes requiring metal to function. Accurate identification of these metal atoms and their environment is a prerequisite to understanding biological mechanism. Using ion beam analysis through particle induced X-ray emission (PIXE), we have quantitatively identified the metal atoms in 30 previously structurally characterized proteins using minimal sample volume and a high-throughput approach. Over half of these metals had been misidentified in the deposited structural models. Some of the PIXE detected metals not seen in the models were explainable as artifacts from promiscuous crystallization reagents. For others, using the correct metal improved the structural models. For multinuclear sites, anomalous diffraction signals enabled the positioning of the correct metals to reveal previously obscured biological information. PIXE is insensitive to the chemical environment, but coupled with experimental diffraction data deposited alongside the structural model it enables validation and potential remediation of metalloprotein models, improving structural and, more importantly, mechanistic knowledge.
Collapse
Affiliation(s)
- Geoffrey W Grime
- Ion Beam Centre, Advanced Technology Institute , University of Surrey , Guildford, Surrey GU2 7XH , United Kingdom
| | - Oliver B Zeldin
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Mary E Snell
- Hauptman-Woodward Medical Research Institute , 700 Ellicott St. , Buffalo , New York 14203 , United States
| | - Edward D Lowe
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - John F Hunt
- Department of Biological Sciences , Columbia University , New York , New York 10027 , United States
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences , Rensselaer Polytechnic Institute , Troy New York 12180 United States
| | - Liang Tong
- Department of Biological Sciences , Columbia University , New York , New York 10027 , United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute , 700 Ellicott St. , Buffalo , New York 14203 , United States.,Materials Design and Innovation , SUNY Buffalo , 700 Ellicott St. , Buffalo , New York 14203 , United States
| | - Elspeth F Garman
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
10
|
Trevor CE, Gonzalez-Munoz AL, Macleod OJS, Woodcock PG, Rust S, Vaughan TJ, Garman EF, Minter R, Carrington M, Higgins MK. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat Microbiol 2019; 4:2074-2081. [PMID: 31636418 PMCID: PMC6881179 DOI: 10.1038/s41564-019-0589-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022]
Abstract
To maintain prolonged infection of mammals, African trypanosomes have evolved remarkable surface coats and a system of antigenic variation1. Within these coats are receptors for macromolecular nutrients such as transferrin2,3. These must be accessible to their ligands but must not confer susceptibility to immunoglobulin-mediated attack. Trypanosomes have a wide host range and their receptors must also bind ligands from diverse species. To understand how these requirements are achieved, in the context of transferrin uptake, we determined the structure of a Trypanosoma brucei transferrin receptor in complex with human transferrin, showing how this heterodimeric receptor presents a large asymmetric ligand-binding platform. The trypanosome genome contains a family of around 14 transferrin receptors4, which has been proposed to allow binding to transferrin from different mammalian hosts5,6. However, we find that a single receptor can bind transferrin from a broad range of mammals, indicating that receptor variation is unlikely to be necessary for promiscuity of host infection. In contrast, polymorphic sites and N-linked glycans are preferentially found in exposed positions on the receptor surface, not contacting transferrin, suggesting that transferrin receptor diversification is driven by a need for antigenic variation in the receptor to prolong survival in a host.
Collapse
Affiliation(s)
- Camilla E Trevor
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Cambridge, UK
| | | | | | | | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Cambridge, UK
| | - Tristan J Vaughan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Cambridge, UK
| | | | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
11
|
Frandsen KEH, Tovborg M, Jørgensen CI, Spodsberg N, Rosso MN, Hemsworth GR, Garman EF, Grime GW, Poulsen JCN, Batth TS, Miyauchi S, Lipzen A, Daum C, Grigoriev IV, Johansen KS, Henrissat B, Berrin JG, Lo Leggio L. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. J Biol Chem 2019; 294:17117-17130. [PMID: 31471321 DOI: 10.1074/jbc.ra119.009223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Indexed: 01/13/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Kristian E H Frandsen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark.,INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France
| | | | | | | | - Marie-Noëlle Rosso
- INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France
| | - Glyn R Hemsworth
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Geoffrey W Grime
- The Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, United Kingdom
| | | | - Tanveer S Batth
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shingo Miyauchi
- INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Chris Daum
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720
| | - Katja S Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, 13009 Marseille, France.,INRA, USC 1408 AFMB, 13009 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Jean-Guy Berrin
- INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Fruncillo S, Trande M, Blanford CF, Astegno A, Wong LS. A Method for Metal/Protein Stoichiometry Determination Using Thin-Film Energy Dispersive X-ray Fluorescence Spectroscopy. Anal Chem 2019; 91:11502-11506. [DOI: 10.1021/acs.analchem.9b03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Matteo Trande
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Taberman H, Bury CS, van der Woerd MJ, Snell EH, Garman EF. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:931-944. [PMID: 31274415 PMCID: PMC6613113 DOI: 10.1107/s1600577519005599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13-3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn.
Collapse
Affiliation(s)
- Helena Taberman
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein Straße 15, 12489 Berlin, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark J. van der Woerd
- Department of Enterprise Technology Services, 2001 Capitol Avenue, Cheyenne, WY 82001, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
14
|
Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 2019; 569:438-442. [PMID: 31068697 DOI: 10.1038/s41586-019-1185-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
Collapse
Affiliation(s)
- Ali D Malay
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan.,Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Naoyuki Miyazaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Artur Biela
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Majsterkiewicz
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Izabela Stupka
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Craig S Kaplan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Agnieszka Kowalczyk
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Di Wu
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Tomasz P Wrobel
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Adam Fineberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Manish S Kushwah
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | | | - Philipp Kukura
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan. .,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
15
|
Abstract
The analysis of thin films is of central importance for functional materials, including the very large and active field of nanomaterials. Quantitative elemental depth profiling is basic to analysis, and many techniques exist, but all have limitations and quantitation is always an issue. We here review recent significant advances in ion beam analysis (IBA) which now merit it a standard place in the analyst's toolbox. Rutherford backscattering spectrometry (RBS) has been in use for half a century to obtain elemental depth profiles non-destructively from the first fraction of a micron from the surface of materials: more generally, "IBA" refers to the cluster of methods including elastic scattering (RBS; elastic recoil detection, ERD; and non-Rutherford elastic backscattering, EBS), nuclear reaction analysis (NRA: including particle-induced gamma-ray emission, PIGE), and also particle-induced X-ray emission (PIXE). We have at last demonstrated what was long promised, that RBS can be used as a primary reference technique for the best traceable accuracy available for non-destructive model-free methods in thin films. Also, it has become clear over the last decade that we can effectively combine synergistically the quite different information available from the atomic (PIXE) and nuclear (RBS, EBS, ERD, NRA) methods. Although it is well known that RBS has severe limitations that curtail its usefulness for elemental depth profiling, these limitations are largely overcome when we make proper synergistic use of IBA methods. In this Tutorial Review we aim to briefly explain to analysts what IBA is and why it is now a general quantitative method of great power. Analysts have got used to the availability of the large synchrotron facilities for certain sorts of difficult problems, but there are many much more easily accessible mid-range IBA facilities also able to address (and often more quantitatively) a wide range of otherwise almost intractable thin film questions.
Collapse
Affiliation(s)
- Chris Jeynes
- University of Surrey Ion Beam Centre, Guildford, GU2 7XJ, England, UK
| | - Julien L Colaux
- University of Surrey Ion Beam Centre, Guildford, GU2 7XJ, England, UK
| |
Collapse
|
16
|
Ho AK, Wagstaff JL, Manna PT, Wartosch L, Qamar S, Garman EF, Freund SMV, Roberts RC. The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biol 2016; 14:109. [PMID: 27927196 PMCID: PMC5142333 DOI: 10.1186/s12915-016-0332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Collapse
Affiliation(s)
- Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jane L Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Lena Wartosch
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
17
|
New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter. PLoS One 2016; 11:e0156972. [PMID: 27300442 PMCID: PMC4907508 DOI: 10.1371/journal.pone.0156972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter) harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS), providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future.
Collapse
|
18
|
Pike ACW, Garman EF, Krojer T, von Delft F, Carpenter EP. An overview of heavy-atom derivatization of protein crystals. Acta Crystallogr D Struct Biol 2016; 72:303-18. [PMID: 26960118 PMCID: PMC4784662 DOI: 10.1107/s2059798316000401] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/08/2016] [Indexed: 11/11/2022] Open
Abstract
Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative.
Collapse
Affiliation(s)
- Ashley C. W. Pike
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
- Department of Biochemistry, University of Johannesburg, Aukland Park 2006, South Africa
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| |
Collapse
|
19
|
Morshed N, Echols N, Adams PD. Using support vector machines to improve elemental ion identification in macromolecular crystal structures. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1147-58. [PMID: 25945580 PMCID: PMC4427199 DOI: 10.1107/s1399004715004241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/01/2015] [Indexed: 11/11/2022]
Abstract
In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.
Collapse
Affiliation(s)
- Nader Morshed
- College of Letters and Science, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Griese JJ, Srinivas V, Högbom M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J Biol Inorg Chem 2014; 19:759-74. [PMID: 24771036 PMCID: PMC4118035 DOI: 10.1007/s00775-014-1140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
Abstract
The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
Collapse
Affiliation(s)
- Julia J. Griese
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Vivek Srinivas
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
22
|
Hesketh GG, Pérez-Dorado I, Jackson LP, Wartosch L, Schäfer IB, Gray SR, McCoy AJ, Zeldin OB, Garman EF, Harbour ME, Evans PR, Seaman MNJ, Luzio JP, Owen DJ. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev Cell 2014; 29:591-606. [PMID: 24856514 PMCID: PMC4059916 DOI: 10.1016/j.devcel.2014.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/03/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022]
Abstract
VARP is a Rab32/38 effector that also binds to the endosomal/lysosomal R-SNARE VAMP7. VARP binding regulates VAMP7 participation in SNARE complex formation and can therefore influence VAMP7-mediated membrane fusion events. Mutant versions of VARP that cannot bind Rab32:GTP, designed on the basis of the VARP ankyrin repeat/Rab32:GTP complex structure described here, unexpectedly retain endosomal localization, showing that VARP recruitment is not dependent on Rab32 binding. We show that recruitment of VARP to the endosomal membrane is mediated by its direct interaction with VPS29, a subunit of the retromer complex, which is involved in trafficking from endosomes to the TGN and the cell surface. Transport of GLUT1 from endosomes to the cell surface requires VARP, VPS29, and VAMP7 and depends on the direct interaction between VPS29 and VARP. Finally, we propose that endocytic cycling of VAMP7 depends on its interaction with VARP and, consequently, also on retromer.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Inmaculada Pérez-Dorado
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Lauren P Jackson
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lena Wartosch
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ingmar B Schäfer
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sally R Gray
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Airlie J McCoy
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Oliver B Zeldin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Michael E Harbour
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Philip R Evans
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| | - J Paul Luzio
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| | - David J Owen
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
23
|
Jacobson F, Karkehabadi S, Hansson H, Goedegebuur F, Wallace L, Mitchinson C, Piens K, Stals I, Sandgren M. The crystal structure of the core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolution. PLoS One 2013; 8:e70562. [PMID: 24039705 PMCID: PMC3764139 DOI: 10.1371/journal.pone.0070562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/25/2013] [Indexed: 11/19/2022] Open
Abstract
In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1). This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD). A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%), including both bacterial and fungal members.
Collapse
Affiliation(s)
- Frida Jacobson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Louise Wallace
- DuPont, Industrial Biosciences, Palo Alto, California, United States of America
| | - Colin Mitchinson
- DuPont, Industrial Biosciences, Palo Alto, California, United States of America
| | - Kathleen Piens
- Department of Biochemistry, Physiology and Microbiology, Ghent University, Ghent, Belgium
| | - Ingeborg Stals
- Faculty of Applied Bioscience Engineering, University College Ghent and Ghent University, Ghent, Belgium
| | - Mats Sandgren
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
24
|
Romolo F, Christopher M, Donghi M, Ripani L, Jeynes C, Webb R, Ward N, Kirkby K, Bailey M. Integrated Ion Beam Analysis (IBA) in Gunshot Residue (GSR) characterisation. Forensic Sci Int 2013; 231:219-28. [DOI: 10.1016/j.forsciint.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022]
|
25
|
Metal stoichiometry of isolated and arsenic substituted metallothionein: PIXE and ESI-MS study. Biometals 2013; 26:887-96. [DOI: 10.1007/s10534-013-9665-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 11/27/2022]
|
26
|
Ugarte M, Grime GW, Lord G, Geraki K, Collingwood JF, Finnegan ME, Farnfield H, Merchant M, Bailey MJ, Ward NI, Foster PJ, Bishop PN, Osborne NN. Concentration of various trace elements in the rat retina and their distribution in different structures. Metallomics 2013; 4:1245-54. [PMID: 23093062 DOI: 10.1039/c2mt20157g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total amount of trace elements in retina from adult male Sprague-Dawley rats (n = 6). Concentration of trace elements within individual retinal areas in frozen sections of the fellow eye was established with the use of two methodologies: (1) particle-induced X-ray emission (PIXE) in combination with 3D depth profiling with Rutherford backscattering spectrometry (RBS) and (2) synchrotron X-ray fluorescence (SXRF) microscopy. The most abundant metal in the retina was zinc, followed by iron and copper. Nickel, manganese, chromium, cobalt, selenium and cadmium were present in very small amounts. The PIXE and SXRF analysis yielded a non-homogenous pattern distribution of metals in the retina. Relatively high levels of zinc were found in the inner part of the photoreceptor inner segments (RIS)/outer limiting membrane (OLM), inner nuclear layer and plexiform layers. Iron was found to accumulate in the retinal pigment epithelium/choroid layer and RIS/OLM. Copper in turn, was localised primarily in the RIS/OLM and plexiform layers. The trace elements iron, copper, and zinc exist in different amounts and locations in the rat retina.
Collapse
Affiliation(s)
- Marta Ugarte
- Centre for Advanced Discovery and Experimental Therapeutics, Institute of Human Development, University of Manchester and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmad M, Grime GW. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:261-267. [PMID: 23388452 DOI: 10.1017/s1431927612014262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.
Collapse
Affiliation(s)
- Muthanna Ahmad
- IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | | |
Collapse
|
28
|
|
29
|
Hilge M. Ca(2+) regulation in the Na(+)/Ca (2+) exchanger features a dual electrostatic switch mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:27-33. [PMID: 23224867 DOI: 10.1007/978-1-4614-4756-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion transport performed by the Na(+)/Ca(2+) exchanger (NCX) is regulated via its cytosolic Ca(2+)-binding domains, CBD1 and CBD2, which act as sensors for intracellular Ca(2+). Striking differences in the electrostatic potential of the Ca(2+)-bound and Ca(2+)-free forms turn the CBD1 and CBD2 Ca(2+)-binding sites into electrostatic switches similar to those of C(2) domains. Binding of Ca(2+) with high affinity to CBD1 induces a conformational change that is relayed to the transmembrane domain and thereby initiates Na(+)/Ca(2+) exchange. The Ca(2+) concentration at which this conformational change occurs is determined by the Ca(2+) affinities of the strictly conserved CBD1 Ca(2+)-binding sites that are modulated by an adjacent, variable region of CBD2. In contrast, the Ca(2+)-binding properties of CBD2 depend on the isoform and the type of residues in the Ca(2+)-binding sites, encoded by a mutually exclusive exon. This second electrostatic switch, formed by CBD2, appears to be required for sustained Na(+)/Ca(2+) exchange and may allow tailored, tissue-specific exchange activities.
Collapse
|
30
|
Abstract
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.
Collapse
Affiliation(s)
- Mark Hilge
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University Basel, CH-4058 Basel, Switzerland.
| |
Collapse
|
31
|
De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:564-77. [PMID: 22525754 PMCID: PMC3335286 DOI: 10.1107/s0907444912005343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 02/20/2023]
Abstract
X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O(2). In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV-Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O(2) reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.
Collapse
Affiliation(s)
- Eugenio De la Mora
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Janet E. Lovett
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
- EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland
| | - Christopher F. Blanford
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- School of Materials, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, England
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Brenda Valderrama
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Enrique Rudino-Pinera
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
32
|
Jeynes C, Webb RP, Lohstroh A. Ion Beam Analysis: A Century of Exploiting the Electronic and Nuclear Structure of the Atom for Materials Characterisation. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793626811000483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analysis using MeV ion beams is a thin film characterisation technique invented some 50 years ago which has recently had the benefit of a number of important advances. This review will cover damage profiling in crystals including studies of defects in semiconductors, surface studies, and depth profiling with sputtering. But it will concentrate on thin film depth profiling using Rutherford backscattering, particle induced X-ray emission and related techniques in the deliberately synergistic way that has only recently become possible. In this review of these new developments, we will show how this integrated approach, which we might call "total IBA", has given the technique great analytical power.
Collapse
Affiliation(s)
- Chris Jeynes
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, England, UK
| | - Roger P. Webb
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, England, UK
| | | |
Collapse
|
33
|
Antonyuk SV, Hough MA. Monitoring and validating active site redox states in protein crystals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:778-84. [PMID: 21215826 DOI: 10.1016/j.bbapap.2010.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Svetlana V Antonyuk
- Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|
34
|
Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. NANOTECHNOLOGY 2010; 21:425102. [PMID: 20858930 DOI: 10.1088/0957-4484/21/42/425102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Metallic nanoparticles (MNP) are able to release localized x-rays when activated with a high energy proton beam by the particle-induced x-ray emission (PIXE) effect. The exploitation of this phenomenon in the therapeutic irradiation of tumors has been investigated. PIXE-based x-ray emission directed at CT26 tumor cells in vitro, when administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNP or SNP), increased with MNP solution concentration over the range of 0.1-2 mg ml(-1). With irradiation by a 45 MeV proton therapy (PT) beam, higher concentrations had a decreased cell survival fraction. An in vivo study in CT26 mouse tumor models with tumor regression assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE effect when compared to conventional PT without MNP (radiation-only group) using a 45 MeV proton beam (p < 0.02). Those receiving GNP or SNP injection doses of 300 mg kg(-1) body weight before proton beam therapy demonstrated 90% or 75% tumor volume reduction (TVR) in 20 days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor volume after 20 days. Higher complete tumor regression (CTR) was observed in 14-24 days after a single treatment of PT with an average rate of 33-65% for those receiving MNP compared with 25% for the radiation-only group. A lower bound of therapeutic effective MNP concentration range, in vivo, was estimated as 30-79 µg g(-1) tissue for both gold and iron nanoparticles. The tumor dose enhancement may compensate for an increase in entrance dose associated with conventional PT when treating large, solid tumors with a spread-out Bragg peak (SOBP) technique. The use of a combined high energy Bragg peak PT with PIXE generated by MNP, or PIXE alone, may result in new treatment options for infiltrative metastatic tumors and other diffuse inflammatory diseases.
Collapse
Affiliation(s)
- Jong-Ki Kim
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, Korea.
| | | | | | | | | | | | | |
Collapse
|
35
|
Harding MM, Nowicki MW, Walkinshaw MD. Metals in protein structures: a review of their principal features. CRYSTALLOGR REV 2010. [DOI: 10.1080/0889311x.2010.485616] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marjorie M. Harding
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| | - Matthew W. Nowicki
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| | - Malcolm D. Walkinshaw
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| |
Collapse
|
36
|
Tanaka N, Kimura H, Faried A, Sakai M, Sano A, Inose T, Sohda M, Okada K, Nakajima M, Miyazaki T, Fukuchi M, Kato H, Asao T, Kuwano H, Satoh T, Oikawa M, Kamiya T, Arakawa K. Quantitative analysis of cisplatin sensitivity of human esophageal squamous cancer cell lines using in-air micro-PIXE. Cancer Sci 2010; 101:1487-92. [PMID: 20331629 PMCID: PMC11159837 DOI: 10.1111/j.1349-7006.2010.01542.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 02/03/2023] Open
Abstract
Cisplatin is a key chemotherapeutic agent for the treatment of esophageal cancer. We examined the intracellular localization of cisplatin in esophageal cancer cell lines and determined their sensitivity to cisplatin using in-air micro-PIXE (particle induced X-ray emission). Two human esophageal squamous cell carcinoma (ESCC) cell lines, TE-2 and TE-13, were examined for their response to cisplatin using MTT assay, flow cytometry, and DNA fragmentation assays. Real-time reverse transcription-polymerase chain reaction was also used to evaluate the mRNA expression of multidrug resistance protein 2 (MRP2) in both cell lines. Platinum localizations of intracellular and intranuclear were measured using in-air micro-PIXE. TE-2 cells were more sensitive to cisplatin than TE-13 cells (IC(50): 37.5 mum and 56.3 mum, respectively). Flow cytometry analysis confirmed that more TE-2 than TE-13 cells were in the sub-G1 phase. DNA fragmentation assay was analyzed to confirm the MTT assay and flow cytometry results. The expression of MRP2 mRNA in TE-13 cells was stronger than in TE-2 cells. In-air micro-PIXE showed that TE-2 cells had higher intracellular cisplatin concentrations than TE-13 cells and the ratio of intranuclear to intracellular cisplatin in individual cells was not significantly different. We observed the intracellular and intranuclear localization of cisplatin using in-air micro-PIXE. The results of this study suggest that in-air micro-PIXE could be a useful quantitative method for evaluating the cisplatin sensitivity of individual cells. Finally, we speculate that MRP2 in the cell membrane may play an important role in regulating the cisplatin sensitivity of ESCC cells.
Collapse
Affiliation(s)
- Naritaka Tanaka
- Department of General Surgical Science, Gunma University, Maebashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Paithankar KS, Garman EF. Know your dose: RADDOSE. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:381-8. [PMID: 20382991 PMCID: PMC2852302 DOI: 10.1107/s0907444910006724] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/22/2010] [Indexed: 11/10/2022]
Abstract
The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter 'diffraction-dose efficiency', which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals.
Collapse
Affiliation(s)
- Karthik S Paithankar
- Department of Biochemistry, Laboratory of Molecular Biophysics, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | | |
Collapse
|
38
|
Garman EF. Radiation damage in macromolecular crystallography: what is it and why should we care? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:339-51. [PMID: 20382986 PMCID: PMC2852297 DOI: 10.1107/s0907444910008656] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/06/2010] [Indexed: 11/10/2022]
Abstract
Radiation damage inflicted during diffraction data collection in macromolecular crystallography has re-emerged in the last decade as a major experimental and computational challenge, as even for crystals held at 100 K it can result in severe data-quality degradation and the appearance in solved structures of artefacts which affect biological interpretations. Here, the observable symptoms and basic physical processes involved in radiation damage are described and the concept of absorbed dose as the basic metric against which to monitor the experimentally observed changes is outlined. Investigations into radiation damage in macromolecular crystallography are ongoing and the number of studies is rapidly increasing. The current literature on the subject is compiled as a resource for the interested researcher.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.
| |
Collapse
|
39
|
Wellenreuther G, Parthasarathy V, Meyer-Klaucke W. Towards a black-box for biological EXAFS data analysis. II. Automatic BioXAS Refinement and Analysis (ABRA). JOURNAL OF SYNCHROTRON RADIATION 2010; 17:25-35. [PMID: 20029108 DOI: 10.1107/s0909049509040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
In biological systems, X-ray absorption spectroscopy (XAS) can determine structural details of metal binding sites with high resolution. Here a method enabling an automated analysis of the corresponding EXAFS data is presented, utilizing in addition to least-squares refinement the prior knowledge about structural details and important fit parameters. A metal binding motif is characterized by the type of donor atoms and their bond lengths. These fit results are compared by bond valance sum analysis and target distances with established structures of metal binding sites. Other parameters such as the Debye-Waller factor and shift of the Fermi energy provide further insights into the quality of a fit. The introduction of mathematical criteria, their combination and calibration allows an automated analysis of XAS data as demonstrated for a number of examples. This presents a starting point for future applications to all kinds of systems studied by XAS and allows the algorithm to be transferred to data analysis in other fields.
Collapse
|
40
|
Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc Natl Acad Sci U S A 2009; 106:14333-8. [PMID: 19667209 DOI: 10.1073/pnas.0902171106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of ion-transport in the Na(+)/Ca(2+) exchanger (NCX) occurs via its cytoplasmic Ca(2+)-binding domains, CBD1 and CBD2. Here, we present a mechanism for NCX activation and inactivation based on data obtained using NMR, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). We initially determined the structure of the Ca(2+)-free form of CBD2-AD and the structure of CBD2-BD that represent the two major splice variant classes in NCX1. Although the apo-form of CBD2-AD displays partially disordered Ca(2+)-binding sites, those of CBD2-BD are entirely unstructured even in an excess of Ca(2+). Striking differences in the electrostatic potential between the Ca(2+)-bound and -free forms strongly suggest that Ca(2+)-binding sites in CBD1 and CBD2 form electrostatic switches analogous to C(2)-domains. SAXS analysis of a construct containing CBD1 and CBD2 reveals a conformational change mediated by Ca(2+)-binding to CBD1. We propose that the electrostatic switch in CBD1 and the associated conformational change are necessary for exchanger activation. The response of the CBD1 switch to intracellular Ca(2+) is influenced by the closely located cassette exons. We further propose that Ca(2+)-binding to CBD2 induces a second electrostatic switch, required to alleviate Na(+)-dependent inactivation of Na(+)/Ca(2+) exchange. In contrast to CBD1, the electrostatic switch in CBD2 is isoform- and splice variant-specific and allows for tailored exchange activities.
Collapse
|
41
|
Sauvé V, Roversi P, Leath KJ, Garman EF, Antrobus R, Lea SM, Berks BC. Mechanism for the hydrolysis of a sulfur-sulfur bond based on the crystal structure of the thiosulfohydrolase SoxB. J Biol Chem 2009; 284:21707-18. [PMID: 19535341 DOI: 10.1074/jbc.m109.002709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SoxB is an essential component of the bacterial Sox sulfur oxidation pathway. SoxB contains a di-manganese(II) site and is proposed to catalyze the release of sulfate from a protein-bound cysteine S-thiosulfonate. A direct assay for SoxB activity is described. The structure of recombinant Thermus thermophilus SoxB was determined by x-ray crystallography to a resolution of 1.5 A. Structures were also determined for SoxB in complex with the substrate analogue thiosulfate and in complex with the product sulfate. A mechanistic model for SoxB is proposed based on these structures.
Collapse
Affiliation(s)
- Véronique Sauvé
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Jonas S, van Loo B, Hyvönen M, Hollfelder F. A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase from Rhizobium leguminosarum. J Mol Biol 2008; 384:120-36. [DOI: 10.1016/j.jmb.2008.08.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/21/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
|
43
|
The binding of haem and zinc in the 1.9 Å X-ray structure of Escherichia coli bacterioferritin. J Biol Inorg Chem 2008; 14:201-7. [DOI: 10.1007/s00775-008-0438-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/05/2008] [Indexed: 11/26/2022]
|
44
|
The Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis. Int J Mol Sci 2008; 9:1548-1560. [PMID: 19169435 PMCID: PMC2630230 DOI: 10.3390/ijms9081548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The ferric uptake regulators (Fur) form a large family of bacterial metal-activated DNA-binding proteins that control a diverse set of genes at the transcriptional level. Mycobacterium tuberculosis, the causative agent of tuberculosis, expresses two members of the Fur family, designated FurA and FurB. Although both belong to the same family, they share only approximately 25% sequence identity and as a consequence, they differ significantly in some of their key biological functions. FurA appears to be a specialized iron-dependent regulator that controls the katG gene, which encodes for a catalase-peroxidase involved in the response of M. tuberculosis to oxidative stress. KatG is also the key mycobacterial enzyme responsible for the activation of the first-line tuberculosis drug Isoniazid. FurB in contrast requires Zn(2+) rather than Fe(2+), to bind to its target sequence in regulated genes, which include those involved in Zn(2+)-homeostasis. Recent biochemical, crystallographic and spectroscopic data have now shed light on the activation and metal discrimination mechanisms in this protein family.
Collapse
|
45
|
Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 2008; 383:144-54. [PMID: 18723026 DOI: 10.1016/j.jmb.2008.08.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022]
Abstract
The glycoside hydrolase (GH) family 61 is a long-recognized, but still recondite, class of proteins, with little known about the activity, mechanism or function of its more than 70 members. The best-studied GH family 61 member, Cel61A of the filamentous fungus Hypocrea jecorina, is known to be an endoglucanase, but it is not clear if this represents the main activity or function of this family in vivo. We present here the first structure for this family, that of Cel61B from H. jecorina. The best-quality crystals were formed in the presence of nickel, and the crystal structure was solved to 1.6 A resolution using a single-wavelength anomalous dispersion method with nickel as the source of anomalous scatter. Cel61B lacks a carbohydrate-binding module and is a single-domain protein that folds into a twisted beta-sandwich. A structure-aided sequence alignment of all GH family 61 proteins identified a highly conserved group of residues on the surface of Cel61B. Within this patch of mostly polar amino acids was a site occupied by the intramolecular nickel hexacoordinately bound in the solved structure. In the Cel61B structure, there is no easily identifiable carbohydrate-binding cleft or pocket or catalytic center of the types normally seen in GHs. A structural comparison search showed that the known structure most similar to Cel61B is that of CBP21 from the Gram-negative soil bacterium Serratia marcescens, a member of the carbohydrate-binding module family 33 proteins. A polar surface patch highly conserved in that structural family has been identified in CBP21 and shown to be involved in chitin binding and in the protein's enhancement of chitinase activities. The analysis of the Cel61B structure is discussed in light of our continuing research to better understand the activities and function of GH family 61.
Collapse
Affiliation(s)
- Saeid Karkehabadi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, Barford D. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451-64. [PMID: 18313383 DOI: 10.1016/j.molcel.2007.12.018] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 12/22/2022]
Abstract
The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.
Collapse
Affiliation(s)
- David Komander
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Montero-Morán GM, Li M, Rendòn-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP. Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 2007; 46:5293-304. [PMID: 17429948 PMCID: PMC2525507 DOI: 10.1021/bi700065h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
His6-tagged xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacterium-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacterium-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in the properties of these proteins, their kinetic parameters are similar (kcat = 30-70 s-1, Km of alphaKG = 31-50 muM, Km of xanthine approximately 45 muM, and pH optima at 7.0-7.4). The enzyme exhibits no significant isotope effect when [8-2H]xanthine is used; however, it demonstrates a 2-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both alphaKG and xanthine. The alphaKG cosubstrate can be substituted with alpha-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to those of the normal alpha-keto acid), while the alphaKG analogue N-oxalylglycine is a competitive inhibitor (Ki = 0.12 muM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, alphaKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB entry 1OS7) and provided insights into the sites of posttranslational modification and substrate binding. These studies represent the first biochemical characterization of purified xanthine/alphaKG dioxygenase.
Collapse
Affiliation(s)
- Gabriela M Montero-Morán
- Institut de Génétique et de Microbiologie, Université Paris-Sud, Bâtiment 409, UMR 8621 CNRS, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC STRUCTURAL BIOLOGY 2007; 7:24. [PMID: 17428317 PMCID: PMC1854907 DOI: 10.1186/1472-6807-7-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/11/2007] [Indexed: 11/16/2022]
Abstract
Background The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes. Results We have used a range of biophysical and computational methods to further analyse the conformational flexibility and ligand binding of Pex5p. A new crystal form for the human Pex5p C-terminal domain (Pex5p(C)) was obtained in the presence of Sr2+ ions, and the structure presents a novel conformation, distinct from all previous liganded and apo crystal structures for Pex5p(C). The difference relates to a near-rigid body movement of two halves of the molecule, and this movement is different from that required to reach a ring-like conformation upon PTS1 ligand binding. The bound Sr2+ ion changes the dynamic properties of Pex5p(C) affecting its conformation, possibly by making the Sr2+-binding loop – located near the hinge region for the observed domain motions – more rigid. Conclusion The current data indicate that Pex5p(C) is able to sample a range of conformational states in the absence of bound PTS1 ligand. The domain movements between various apo conformations are distinct from those involved in ligand binding, although the differences between all observed conformations so far can be characterised by the movement of the two halves of Pex5p(C) as near-rigid bodies with respect to each other.
Collapse
|
49
|
Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E. Crystal Structure and Function of the Zinc Uptake Regulator FurB from Mycobacterium tuberculosis. J Biol Chem 2007; 282:9914-9922. [PMID: 17213192 DOI: 10.1074/jbc.m609974200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the ferric/zinc uptake regulator (Fur/Zur) family are the central metal-dependent regulator proteins in many Gram-negative and -positive bacteria. They are responsible for the control of a wide variety of basic physiological processes and the expression of important virulence factors in human pathogens. Therefore, Fur has gathered significant interest as a potential target for novel antibiotics. Here we report the crystal structure of FurB from Mycobacterium tuberculosis at a resolution of 2.7A, and we present biochemical and spectroscopic data that allow us to propose the functional role of this protein. Although the overall fold of FurB with an N-terminal DNA binding domain and a C-terminal dimerization domain is conserved among the Zur/Fur family, large differences in the spatial arrangement of the two domains with respect to each other can be observed. The biochemical and spectroscopic analysis presented here reveals that M. tuberculosis FurB is Zn(II)-dependent and is likely to control genes involved in the bacterial zinc uptake. The combination of the structural, spectroscopic, and biochemical results enables us to determine the structural basis for functional differences in this important family of bacterial regulators.
Collapse
Affiliation(s)
- Debora Lucarelli
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Santina Russo
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Elspeth Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Milano
- Department of Genetics and Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Wolfram Meyer-Klaucke
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany.
| | - Ehmke Pohl
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
| |
Collapse
|
50
|
Kadlec J, Guilligay D, Ravelli RB, Cusack S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA (NEW YORK, N.Y.) 2006; 12:1817-24. [PMID: 16931876 PMCID: PMC1581972 DOI: 10.1261/rna.177606] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UPF1 is an essential eukaryotic RNA helicase that plays a key role in various mRNA degradation pathways, notably nonsense-mediated mRNA decay (NMD). In combination with UPF2 and UPF3, it forms part of the surveillance complex that detects mRNAs containing premature stop codons and triggers their degradation in all organisms studied from yeast to human. We describe the 3 A resolution crystal structure of the highly conserved cysteine-histidine-rich domain of human UPF1 and show that it is a unique combination of three zinc-binding motifs arranged into two tandem modules related to the RING-box and U-box domains of ubiquitin ligases. This UPF1 domain interacts with UPF2, and we identified by mutational analysis residues in two distinct conserved surface regions of UPF1 that mediate this interaction. UPF1 residues we identify as important for the interaction with UPF2 are not conserved in UPF1 homologs from certain unicellular parasites that also appear to lack UPF2 in their genomes.
Collapse
Affiliation(s)
- Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|