1
|
Boie S, Chen J, Sanderson MJ, Sneyd J. The relative contributions of store-operated and voltage-gated Ca 2+ channels to the control of Ca 2+ oscillations in airway smooth muscle. J Physiol 2016; 595:3129-3141. [PMID: 27502470 DOI: 10.1113/jp272996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS Agonist-dependent oscillations in the concentration of free cytosolic calcium are a vital mechanism for the control of airway smooth muscle contraction and thus are a critical factor in airway hyper-responsiveness. Using a mathematical model, closely tied to experimental work, we show that the oscillations in membrane potential accompanying the calcium oscillations have no significant effect on the properties of the calcium oscillations. In addition, the model shows that calcium entry through store-operated calcium channels is critical for calcium oscillations, but calcium entry through voltage-gated channels has much less effect. The model predicts that voltage-gated channels are less important than store-operated channels in the control of airway smooth muscle tone. ABSTRACT Airway smooth muscle contraction is typically the key mechanism underlying airway hyper-responsiveness, and the strength of muscle contraction is determined by the frequency of oscillations of intracellular calcium (Ca2+ ) concentration. In airway smooth muscle cells, these Ca2+ oscillations are caused by cyclic Ca2+ release from the sarcoplasmic reticulum, although Ca2+ influx via plasma membrane channels is also necessary to sustain the oscillations over longer times. To assess the relative contributions of store-operated and voltage-gated Ca2+ channels to this Ca2+ influx, we generated a comprehensive mathematical model, based on experimental Ca2+ measurements in mouse precision-cut lung slices, to simulate Ca2+ oscillations and changes in membrane potential. Agonist-induced Ca2+ oscillations are accompanied by oscillations in membrane potential, although the membrane potential oscillations are too small to generate large Ca2+ currents through voltage-gated Ca2+ channels, and thus have little effect on the Ca2+ oscillations. Ca2+ entry through voltage-gated channels only becomes important when the cell is depolarized (e.g. by a high external K+ concentration). As a result, agonist-induced Ca2+ oscillations are critically dependent on Ca2+ entry through store-operated channels but do not depend strongly on Ca2+ entry though voltage-gated channels.
Collapse
Affiliation(s)
- Sebastian Boie
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Gosak M, Guibert C, Billaud M, Roux E, Marhl M. The influence of gap junction network complexity on pulmonary artery smooth muscle reactivity in normoxic and chronically hypoxic conditions. Exp Physiol 2013; 99:272-85. [DOI: 10.1113/expphysiol.2013.074971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Croisier H, Tan X, Perez-Zoghbi JF, Sanderson MJ, Sneyd J, Brook BS. Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLoS One 2013; 8:e69598. [PMID: 23936056 PMCID: PMC3723852 DOI: 10.1371/journal.pone.0069598] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Intracellular dynamics of airway smooth muscle cells (ASMC) mediate ASMC contraction and proliferation, and thus play a key role in airway hyper-responsiveness (AHR) and remodelling in asthma. We evaluate the importance of store-operated entry (SOCE) in these dynamics by constructing a mathematical model of ASMC signaling based on experimental data from lung slices. The model confirms that SOCE is elicited upon sufficient depletion of the sarcoplasmic reticulum (SR), while receptor-operated entry (ROCE) is inhibited in such conditions. It also shows that SOCE can sustain agonist-induced oscillations in the absence of other influx. SOCE up-regulation may thus contribute to AHR by increasing the oscillation frequency that in turn regulates ASMC contraction. The model also provides an explanation for the failure of the SERCA pump blocker CPA to clamp the cytosolic of ASMC in lung slices, by showing that CPA is unable to maintain the SR empty of . This prediction is confirmed by experimental data from mouse lung slices, and strongly suggests that CPA only partially inhibits SERCA in ASMC.
Collapse
Affiliation(s)
- Huguette Croisier
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Xiahui Tan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachussetts, United States of America
| | - Jose F. Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michael J. Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachussetts, United States of America
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Bindi S. Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC. Inflammation alters regional mitochondrial Ca²+ in human airway smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C244-56. [PMID: 22673614 DOI: 10.1152/ajpcell.00414.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from intracellular sources versus the plasma membrane as well as respond to differential energy demands at these sites. We propose that such differential mitochondrial regulation, and its disruption, may play a role in airway hyperreactivity in diseases such as asthma, where [Ca(2+)](cyt) is increased.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
5
|
Semenov I, Wang B, Herlihy JT, Brenner R. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. J Physiol 2011; 589:1803-17. [PMID: 21300746 DOI: 10.1113/jphysiol.2010.204347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
6
|
Wang IY, Bai Y, Sanderson MJ, Sneyd J. A mathematical analysis of agonist- and KCl-induced Ca(2+) oscillations in mouse airway smooth muscle cells. Biophys J 2010; 98:1170-81. [PMID: 20371316 DOI: 10.1016/j.bpj.2009.12.4273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 10/24/2022] Open
Abstract
Airway hyperresponsiveness is a major characteristic of asthma and is generally ascribed to excessive airway narrowing associated with the contraction of airway smooth muscle cells (ASMCs). ASMC contraction is initiated by a rise in intracellular calcium concentration ([Ca(2+)](i)), observed as oscillatory Ca(2+) waves that can be induced by either agonist or high extracellular K(+) (KCl). In this work, we present a model of oscillatory Ca(2+) waves based on experimental data that incorporate both the inositol trisphosphate receptor and the ryanodine receptor. We then combined this Ca(2+) model and our modified actin-myosin cross-bridge model to investigate the role and contribution of oscillatory Ca(2+) waves to contractile force generation in mouse ASMCs. The model predicts that: 1), the difference in behavior of agonist- and KCl-induced Ca(2+) waves results principally from the fact that the sarcoplasmic reticulum is depleted during agonist-induced oscillations, but is overfilled during KCl-induced oscillations; 2), regardless of the order in which agonist and KCl are added into the cell, the resulting [Ca(2+)](i) oscillations will always be the short-period, agonist-induced-like oscillations; and 3), both the inositol trisphosphate receptor and the ryanodine receptor densities are higher toward one end of the cell. In addition, our results indicate that oscillatory Ca(2+) waves generate less contraction than whole-cell Ca(2+) oscillations induced by the same agonist concentration. This is due to the spatial inhomogeneity of the receptor distributions.
Collapse
Affiliation(s)
- Inga Y Wang
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
7
|
Burrowes KS, Swan AJ, Warren NJ, Tawhai MH. Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3247-63. [PMID: 18593661 PMCID: PMC3268218 DOI: 10.1098/rsta.2008.0073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Collapse
Affiliation(s)
- K S Burrowes
- Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK.
| | | | | | | |
Collapse
|
8
|
Corrias A, Buist ML. Quantitative cellular description of gastric slow wave activity. Am J Physiol Gastrointest Liver Physiol 2008; 294:G989-95. [PMID: 18276830 DOI: 10.1152/ajpgi.00528.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal (ICC) are responsible for the spontaneous and omnipresent electrical activity in the stomach. A quantitative description of the intracellular processes whose coordinated activity is believed to generate electrical slow waves has been developed and is presented here. In line with recent experimental evidence, the model describes how the interplay between the mitochondria and the endoplasmic reticulum in cycling intracellular Ca(2+) provides the primary regulatory signal for the initiation of the slow wave. The major ion channels that have been identified as influencing slow wave activity have been modeled according to data obtained from isolated ICC. The model has been validated by comparing the simulated profile of the slow waves with experimental recordings and shows good correspondence in terms of frequency, amplitude, and shape in both control and pharmacologically altered conditions.
Collapse
Affiliation(s)
- Alberto Corrias
- Division of Bioengineering, National Univ. of Singapore, 9 Engineering Dr. 1, Singapore 117576
| | | |
Collapse
|
9
|
Marhl M, Gosak M, Perc M, Jane Dixon C, Green AK. Spatio-temporal modelling explains the effect of reduced plasma membrane Ca2+ efflux on intracellular Ca2+ oscillations in hepatocytes. J Theor Biol 2007; 252:419-26. [PMID: 18160078 DOI: 10.1016/j.jtbi.2007.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/19/2022]
Abstract
In many non-excitable eukaryotic cells, including hepatocytes, Ca(2+) oscillations play a key role in intra- and intercellular signalling, thus regulating many cellular processes from fertilisation to death. Therefore, understanding the mechanisms underlying these oscillations, and consequently understanding how they may be regulated, is of great interest. In this paper, we study the influence of reduced Ca(2+) plasma membrane efflux on Ca(2+) oscillations in hepatocytes. Our previous experiments with carboxyeosin show that a reduced plasma membrane Ca(2+) efflux increases the frequency of Ca(2+) oscillations, but does not affect the duration of individual transients. This phenomenon can be best explained by taking into account not only the temporal, but also the spatial dynamics underlying the generation of Ca(2+) oscillations in the cell. Here we divide the cell into a grid of elements and treat the Ca(2+) dynamics as a spatio-temporal phenomenon. By converting an existing temporal model into a spatio-temporal one, we obtain theoretical predictions that are in much better agreement with the experimental observations.
Collapse
Affiliation(s)
- Marko Marhl
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, Maribor SI-2000, Slovenia.
| | | | | | | | | |
Collapse
|