1
|
Lévesque M, Arguin M. The oscillatory features of visual processing are altered in healthy aging. Front Psychol 2024; 15:1323493. [PMID: 38449765 PMCID: PMC10914935 DOI: 10.3389/fpsyg.2024.1323493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
The temporal features of visual processing were compared between young and elderly healthy participants in visual object and word recognition tasks using the technique of random temporal sampling. The target stimuli were additively combined with a white noise field and were exposed very briefly (200 ms). Target visibility oscillated randomly throughout exposure duration by manipulating the signal-to-noise ratio (SNR). Classification images (CIs) based on response accuracy were calculated to reflect processing efficiency according to the time elapsed since target onset and the power of SNR oscillations in the 5-55 Hz range. CIs differed substantially across groups whereas individuals of the same group largely shared crucial features such that a machine learning algorithm reached 100% accuracy in classifying the data patterns of individual participants into their proper group. These findings demonstrate altered perceptual oscillations in healthy aging and are consistent with previous investigations showing brain oscillation anomalies in the elderly.
Collapse
Affiliation(s)
- Mélanie Lévesque
- Département de Psychologie, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Martin Arguin
- Département de Psychologie, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Zipser-Mohammadzada F, Conway BA, Halliday DM, Zipser CM, Easthope CA, Curt A, Schubert M. Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control. Front Hum Neurosci 2022; 16:927704. [PMID: 35992941 PMCID: PMC9387543 DOI: 10.3389/fnhum.2022.927704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals regaining reliable day-to-day walking function after incomplete spinal cord injury (iSCI) report persisting unsteadiness when confronted with walking challenges. However, quantifiable measures of walking capacity lack the sensitivity to reveal underlying impairments of supra-spinal locomotor control. This study investigates the relationship between intramuscular coherence and corticospinal dynamic balance control during a visually guided Target walking treadmill task. In thirteen individuals with iSCI and 24 controls, intramuscular coherence and cumulant densities were estimated from pairs of Tibialis anterior surface EMG recordings during normal treadmill walking and a Target walking task. The approximate center of mass was calculated from pelvis markers. Spearman rank correlations were performed to evaluate the relationship between intramuscular coherence, clinical parameters, and center of mass parameters. In controls, we found that the Target walking task results in increased high-frequency (21–44 Hz) intramuscular coherence, which negatively related to changes in the center of mass movement, whereas this modulation was largely reduced in individuals with iSCI. The impaired modulation of high-frequency intramuscular coherence during the Target walking task correlated with neurophysiological and functional readouts, such as motor-evoked potential amplitude and outdoor mobility score, as well as center of mass trajectory length. The Target walking effect, the difference between Target and Normal walking intramuscular coherence, was significantly higher in controls than in individuals with iSCI [F(1.0,35.0) = 13.042, p < 0.001]. Intramuscular coherence obtained during challenging walking in individuals with iSCI may provide information on corticospinal gait control. The relationships between biomechanics, clinical scores, and neurophysiology suggest that intramuscular coherence assessed during challenging tasks may be meaningful for understanding impaired supra-spinal control in individuals with iSCI.
Collapse
Affiliation(s)
- Freschta Zipser-Mohammadzada
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- *Correspondence: Freschta Zipser-Mohammadzada,
| | - Bernard A. Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - David M. Halliday
- Department of Electronic Engineering, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Chris A. Easthope
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Cereneo Foundation, Center for Interdisciplinary Research, Vitznau, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
3
|
Hernández-Andrade L, Hermosillo-Abundis AC, Betancourt-Navarrete BL, Ruge D, Trenado C, Lemuz-López R, Pelayo-González HJ, López-Cortés VA, Bonilla-Sánchez MDR, García-Flores MA, Méndez-Balbuena I. EEG Global Coherence in Scholar ADHD Children during Visual Object Processing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5953. [PMID: 35627489 PMCID: PMC9141182 DOI: 10.3390/ijerph19105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023]
Abstract
Among neurodevelopmental disorders, attention deficit hyperactivity disorder (ADHD) is the main cause of school failure in children. Notably, visuospatial dysfunction has also been emphasized as a leading cause of low cognitive performance in children with ADHD. Consequently, the present study aimed to identify ADHD-related changes in electroencephalography (EEG) characteristics, associated with visual object processing in school-aged children. We performed Multichannel EEG recordings in 16-year-old children undergoing Navon's visual object processing paradigm. We mapped global coherence during the processing of local and global visual stimuli that were consistent, inconsistent, or neutral. We found that Children with ADHD showed significant differences in global weighted coherence during the processing of local and global inconsistent visual stimuli and longer response times in comparison to the control group. Delta and theta EEG bands highlighted important features for classification in both groups. Thus, we advocate EEG coherence and low-frequency EEG spectral power as prospective markers of visual processing deficit in ADHD. Our results have implications for the development of diagnostic interventions in ADHD and provide a deeper understanding of the factors leading to low performance in school-aged children.
Collapse
Affiliation(s)
- Loyda Hernández-Andrade
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | | | - Brenda Lesly Betancourt-Navarrete
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | - Diane Ruge
- Instiute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK;
- Laboratoire de Recherche en Neurosciences Cliniques (LRENC), 34000 Montpellier, France;
| | - Carlos Trenado
- Laboratoire de Recherche en Neurosciences Cliniques (LRENC), 34000 Montpellier, France;
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Rafael Lemuz-López
- Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico;
| | - Héctor Juan Pelayo-González
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | - Vicente Arturo López-Cortés
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | - María del Rosario Bonilla-Sánchez
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | - Marco Antonio García-Flores
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| | - Ignacio Méndez-Balbuena
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (L.H.-A.); (B.L.B.-N.); (H.J.P.-G.); (V.A.L.-C.); (M.d.R.B.-S.); (M.A.G.-F.)
| |
Collapse
|
4
|
Joo P, Lee H, Wang S, Kim S, Hudetz AG. Network Model With Reduced Metabolic Rate Predicts Spatial Synchrony of Neuronal Activity. Front Comput Neurosci 2021; 15:738362. [PMID: 34690730 PMCID: PMC8529180 DOI: 10.3389/fncom.2021.738362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
In a cerebral hypometabolic state, cortical neurons exhibit slow synchronous oscillatory activity with sparse firing. How such a synchronization spatially organizes as the cerebral metabolic rate decreases have not been systemically investigated. We developed a network model of leaky integrate-and-fire neurons with an additional dependency on ATP dynamics. Neurons were scattered in a 2D space, and their population activity patterns at varying ATP levels were simulated. The model predicted a decrease in firing activity as the ATP production rate was lowered. Under hypometabolic conditions, an oscillatory firing pattern, that is, an ON-OFF cycle arose through a failure of sustainable firing due to reduced excitatory positive feedback and rebound firing after the slow recovery of ATP concentration. The firing rate oscillation of distant neurons developed at first asynchronously that changed into burst suppression and global synchronization as ATP production further decreased. These changes resembled the experimental data obtained from anesthetized rats, as an example of a metabolically suppressed brain. Together, this study substantiates a novel biophysical mechanism of neuronal network synchronization under limited energy supply conditions.
Collapse
Affiliation(s)
- Pangyu Joo
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
| | - Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Das B, De D. Router design for nano-communication using actin quantum cellular automata. IET Nanobiotechnol 2020; 14:609-616. [PMID: 33010137 PMCID: PMC8676500 DOI: 10.1049/iet-nbt.2020.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Logic expressions can be designed from actin filaments. It is a protein that makes the cellular structure and plays an important role in intracellular communication. Nano communication technique has been established using actin cellular automata. Among several rules, (1, 30) and (4, 27) rules have been used to design 2 to 1 multiplexer, 4 to 1 multiplexer, 1 to 2 demultiplexer and 1 to 4 demultiplexer. Router or data selector has been made of using multiplexer and demultiplexer. Three novel circuits such as multiplexer, demultiplexer and nano-router have been designed using the projected mechanism. The primary focus of this proposed technique is on different designs of the multiplexer, demultiplexer and minimum cell count with minimum time steps. The different router circuits have been simulated with the help of Simulink by which output has been verified for different circuits. Stuck at fault analysis is also done in this study. Device density and power consumption have also been included in this study. A comparative analysis of the different designs of the router provides a better concept of circuit optimisation. Furthermore, this study analyses convenient forthcoming applications in nano-technology and nano-bio-molecular systems involving the proposed parameters.
Collapse
Affiliation(s)
- Biplab Das
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, BF-142, Sector-1, Saltlake, Kolkata-700064, India.
| | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, BF-142, Sector-1, Saltlake, Kolkata-700064, India
| |
Collapse
|
6
|
Radmanesh M, Jalili M, Kozlowska K. Activation of Functional Brain Networks in Children With Psychogenic Non-epileptic Seizures. Front Hum Neurosci 2020; 14:339. [PMID: 33192376 PMCID: PMC7477327 DOI: 10.3389/fnhum.2020.00339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 02/03/2023] Open
Abstract
Objectives Psychogenic non-epileptic seizures (PNES) have been hypothesized to emerge in the context of neural networks instability. To explore this hypothesis in children, we applied a graph theory approach to examine connectivity in neural networks in the resting-state EEG in 35 children with PNES, 31 children with other functional neurological symptoms (but no PNES), and 75 healthy controls. Methods The networks were extracted from Laplacian-transformed time series by a coherence connectivity estimation method. Results Children with PNES (vs. controls) showed widespread changes in network metrics: increased global efficiency (gamma and beta bands), increased local efficiency (gamma band), and increased modularity (gamma and alpha bands). Compared to controls, they also had higher levels of autonomic arousal (e.g., lower heart variability); more anxiety, depression, and stress on the Depression Anxiety and Stress Scales; and more adverse childhood experiences on the Early Life Stress Questionnaire. Increases in network metrics correlated with arousal. Children with other functional neurological symptoms (but no PNES) showed scattered and less pronounced changes in network metrics. Conclusion The results indicate that children with PNES present with increased activation of neural networks coupled with increased physiological arousal. While this shift in functional organization may confer a short-term adaptive advantage-one that facilitates neural communication and the child's capacity to respond self-protectively in the face of stressful life events-it may also have a significant biological cost. It may predispose the child's neural networks to periods of instability-presenting clinically as PNES-when the neural networks are faced with perturbations in energy flow or with additional demands.
Collapse
Affiliation(s)
| | - Mahdi Jalili
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The University of Sydney School of Medicine, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ertl M, Klaus M, Mast FW, Brandt T, Dieterich M. Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations. Neuroimage 2020; 219:117015. [PMID: 32505699 DOI: 10.1016/j.neuroimage.2020.117015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Perceptual decision-making is a complex task that requires multiple processing steps performed by spatially distinct brain regions interacting in order to optimize perception and motor response. Most of our knowledge on these processes and interactions were derived from unimodal stimulations of the visual system which identified the lateral intraparietal area and the posterior parietal cortex as critical regions. Unlike the visual system, the vestibular system has no primary cortical areas and it is associated with separate multisensory areas within the temporo-parietal cortex with the parieto-insular vestibular cortex, PIVC, being the core region. The aim of the presented experiment was to investigate the transition from sensation to perception and to reveal the main structures of the cortical vestibular system involved in perceptual decision-making. Therefore, an EEG analysis was performed in 35 healthy subjects during linear whole-body accelerations of different intensities on a motor-driven motion platform (hexapod). We used a discrimination task in order to judge the intensity of the accelerations. Furthermore, we manipulated the expectation of the upcoming stimulus by indicating the probability (25%, 50%, 75%, 100%) of the motion direction. The analysis of the vestibular evoked potentials (VestEPs) showed that the decision-making process leads to a second positive peak (P2b) which was not observed in previous task-free experiments. The comparison of the estimated neural generators of the P2a and P2b components showed significant activity differences in the anterior cingulus, the parahippocampal and the middle temporal gyri. Taking into account the time courses of the P2 components, the physical properties of the stimuli, and the responses given by the subjects we conclude that the P2b likely reflects the transition from the processing of sensory information to perceptual evaluation. Analyzing the decision-uncertainty reported by the subjects, a persistent divergence of the time courses starting at 188 ms after the acceleration was found at electrode Pz. This finding demonstrated that meta-cognition by means of confidence estimation starts in parallel with the decision-making process itself. Further analyses in the time-frequency domain revealed that a correct classification of acceleration intensities correlated with an inter-trial phase clustering at electrode Cz and an inter-site phase clustering of theta oscillations over frontal, central, and parietal cortical areas. The sites where the phase clustering was observed corresponded to core decision-making brain areas known from neuroimaging studies in the visual domain.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University Bern, Switzerland; Department of Neurology, Ludwig-Maximilians-Universität München, Germany.
| | - M Klaus
- Department of Psychology, University Bern, Switzerland
| | - F W Mast
- Department of Psychology, University Bern, Switzerland
| | - T Brandt
- German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Hertie Senior Research Professor for Clinical Neuroscience, Ludwig-Maximilians-Universität München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
8
|
Geesink JH, Meijer DKF. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells. Electromagn Biol Med 2018; 36:357-378. [PMID: 29164985 DOI: 10.1080/15368378.2017.1389752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.
Collapse
Affiliation(s)
- J H Geesink
- a Department of biophysics , Groningen , The Netherlands
| | - D K F Meijer
- a Department of biophysics , Groningen , The Netherlands
| |
Collapse
|
9
|
Wendt A. The mind-body problem and social science: Motivating a quantum social theory. JOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR 2018. [DOI: 10.1111/jtsb.12171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sadhu T, Das B, De D, Das JC. Design of binary subtractor using actin quantum cellular automata. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2017.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tapatosh Sadhu
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Biplab Das
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Debashis De
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Jadav Chandra Das
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| |
Collapse
|
11
|
Kim M, Kim S, Mashour GA, Lee U. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks. Front Comput Neurosci 2017; 11:55. [PMID: 28713258 PMCID: PMC5492767 DOI: 10.3389/fncom.2017.00055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea.,Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - UnCheol Lee
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
12
|
Human high intelligence is involved in spectral redshift of biophotonic activities in the brain. Proc Natl Acad Sci U S A 2016; 113:8753-8. [PMID: 27432962 DOI: 10.1073/pnas.1604855113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain.
Collapse
|
13
|
Lord V, Opacka-Juffry J. Electroencephalography (EEG) Measures of Neural Connectivity in the Assessment of Brain Responses to Salient Auditory Stimuli in Patients with Disorders of Consciousness. Front Psychol 2016; 7:397. [PMID: 27047424 PMCID: PMC4801887 DOI: 10.3389/fpsyg.2016.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Victoria Lord
- Department of Life Sciences, University of Roehampton London, UK
| | | |
Collapse
|
14
|
Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0183. [PMID: 26009762 DOI: 10.1098/rstb.2014.0183] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (point-to-point communication, the prototype being synaptic transmission with axons and terminals) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid (CSF)) involving large numbers of cells in the CNS. Volume and synaptic transmission become integrated inter alia through the ability of their chemical signals to activate different types of receptor protomers in heteroreceptor complexes located synaptically or extrasynaptically in the plasma membrane. The demonstration of extracellular dopamine (DA) and serotonin (5-HT) fluorescence around the DA and 5-HT nerve cell bodies with the Falck-Hillarp formaldehyde fluorescence method after treatment with amphetamine and chlorimipramine, respectively, gave the first indications of the existence of VT in the brain, at least at the soma level. There exist different forms of VT. Early studies on VT only involved spread including diffusion and flow of soluble biological signals, especially transmitters and modulators, a communication called extrasynaptic (short distance) and long distance (paraaxonal and paravascular and CSF pathways) VT. Also, the extracellular vesicle type of VT was demonstrated. The exosomes (endosome-derived vesicles) appear to be the major vesicular carriers for VT but the larger microvesicles also participate. Both mainly originate at the soma-dendritic level. They can transfer lipids and proteins, including receptors, Rab GTPases, tetraspanins, cholesterol, sphingolipids and ceramide. Within them there are also subsets of mRNAs and non-coding regulatory microRNAs. At the soma-dendritic membrane, sets of dynamic postsynaptic heteroreceptor complexes (built up of different types of physically interacting receptors and proteins) involving inter alia G protein-coupled receptors including autoreceptors, ion channel receptors and receptor tyrosine kinases are hypothesized to be the molecular basis for learning and memory. At nerve terminals, the presynaptic heteroreceptor complexes are postulated to undergo plastic changes to maintain the pattern of multiple transmitter release reflecting the firing pattern to be learned by the heteroreceptor complexes in the postsynaptic membrane.
Collapse
Affiliation(s)
| | - Luigi F Agnati
- Department of Biomedical, Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Karl Bechter
- Clinic for Psychiatry and Psychotherapy II, Ulm University, BKH-Guenzburg, Germany
| | - Anders Jansson
- Section for upper abdominal surgery, Gastrocenter, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | - Alexander O Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
15
|
Rubik B, Muehsam D, Hammerschlag R, Jain S. Biofield Science and Healing: History, Terminology, and Concepts. Glob Adv Health Med 2015; 4:8-14. [PMID: 26665037 PMCID: PMC4654789 DOI: 10.7453/gahmj.2015.038.suppl] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield science is an emerging field of study that aims to provide a scientific foundation for understanding the complex homeodynamic regulation of living systems. By furthering our scientific knowledge of the biofield, we arrive at a better understanding of the foundations of biology as well as the phenomena that have been described as "energy medicine." Energy medicine, the application of extremely low-level signals to the body, including energy healer interventions and bio-electromagnetic device-based therapies, is incomprehensible from the dominant biomedical paradigm of "life as chemistry." The biofield or biological field, a complex organizing energy field engaged in the generation, maintenance, and regulation of biological homeodynamics, is a useful concept that provides the rudiments of a scientific foundation for energy medicine and thereby advances the research and practice of it. An overview on the biofield is presented in this paper, with a focus on the history of the concept, related terminology, key scientific concepts, and the value of the biofield perspective for informing future research.
Collapse
Affiliation(s)
- Beverly Rubik
- Institute for Frontier Science, Oakland, California; Integrative Health Studies, California Institute of Integral Studies, San Francisco; College of Mind-Body Medicine, Saybrook University, Oakland, California; Energy Medicine University, Sausalito, California (Dr Rubik)
| | - David Muehsam
- Visual Institute of Developmental Arts and Sciences, National Institute of Biostructures and Biosystems, Bologna, Italy (Dr Muehsam)
| | - Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Shamini Jain
- Department of Psychiatry and Center for Integrative Medicine, University of California, San Diego; Consciousness and Healing Initiative, San Diego (Dr Jain)
| |
Collapse
|
16
|
Abstract
Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of "biofield" interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or "subtle" processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine.
Collapse
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Arts and Sciences, National Institute of Biostructures and Biosystems, Bologna, Italy; and Consciousness and Healing Initiative, San Diego, California (Dr Muehsam)
| | - Gaétan Chevalier
- Developmental and Cell Biology Department, University of California Irvine, Irvine (Dr Chevalier)
| | - Tiffany Barsotti
- California Institute for Human Science, Encinitas, California (Ms Barsotti)
| | - Blake T Gurfein
- Osher Center for Integrative Medicine, University of California, San Francisco, (Dr Gurfein)
| |
Collapse
|
17
|
Kafatos MC, Chevalier G, Chopra D, Hubacher J, Kak S, Theise ND. Biofield Science: Current Physics Perspectives. Glob Adv Health Med 2015; 4:25-34. [PMID: 26665039 PMCID: PMC4654779 DOI: 10.7453/gahmj.2015.011.suppl] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe.
Collapse
Affiliation(s)
| | - Gaétan Chevalier
- The Earthing Institute and Psy-Tek Laboratory, Encinitas, California (Dr Chevalier)
| | - Deepak Chopra
- Chopra Foundation and University of California, San Diego (Dr Chopra)
| | - John Hubacher
- Pantheon Research Inc, Culver City, California (Mr Hubacher)
| | - Subhash Kak
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater (Dr Kak)
| | - Neil D Theise
- Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York (Dr Theise)
| |
Collapse
|
18
|
Jerath R, Crawford MW, Barnes VA. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience. Front Psychol 2015; 6:1204. [PMID: 26379573 PMCID: PMC4550793 DOI: 10.3389/fpsyg.2015.01204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022] Open
Abstract
The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.
Collapse
Affiliation(s)
| | | | - Vernon A Barnes
- Department of Pediatrics, Georgia Prevention Institute, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
19
|
Craddock TJA, Priel A, Tuszynski JA. Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? J Integr Neurosci 2015; 13:293-311. [PMID: 25012713 DOI: 10.1142/s0219635214400019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This paper discusses the possibility of quantum coherent oscillations playing a role in neuronal signaling. Consciousness correlates strongly with coherent neural oscillations, however the mechanisms by which neurons synchronize are not fully elucidated. Recent experimental evidence of quantum beats in light-harvesting complexes of plants (LHCII) and bacteria provided a stimulus for seeking similar effects in important structures found in animal cells, especially in neurons. We argue that microtubules (MTs), which play critical roles in all eukaryotic cells, possess structural and functional characteristics that are consistent with quantum coherent excitations in the aromatic groups of their tryptophan residues. Furthermore we outline the consequences of these findings on neuronal processes including the emergence of consciousness.
Collapse
Affiliation(s)
- Travis J A Craddock
- Center for Psychological Studies, Graduate School of Computer and Information Sciences, College of Osteophatic Medicine and the Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida 33314-7796, USA
| | | | | |
Collapse
|
20
|
Smythies J. Off the beaten track: the molecular structure of long-term memory: three novel hypotheses-electrical, chemical and anatomical (allosteric). Front Integr Neurosci 2015; 9:4. [PMID: 25688189 PMCID: PMC4310284 DOI: 10.3389/fnint.2015.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 02/04/2023] Open
Affiliation(s)
- John Smythies
- Department of Psychiatry, Center for Brain and Cognition, University of California San Diego La Jolla, CA, USA ; Department of Psychiatry, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
21
|
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 2014; 3:40-55. [PMID: 24808981 PMCID: PMC4010966 DOI: 10.7453/gahmj.2014.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Sciences, Bologna, Italy (Dr Muehsam)
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems, Visual Institute of Developmental Sciences, Bologna; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna (Dr Ventura), Italy
| |
Collapse
|
22
|
Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci 2014; 7:278. [PMID: 24427115 PMCID: PMC3879459 DOI: 10.3389/fncel.2013.00278] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego, CA, USA
| | | |
Collapse
|
23
|
Tang R, Dai J. Biophoton signal transmission and processing in the brain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:71-5. [PMID: 24461927 DOI: 10.1016/j.jphotobiol.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|