1
|
Baverstock K. The Gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:e73-e88. [PMID: 38044248 DOI: 10.1016/j.pbiomolbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
2
|
Baverstock K. The gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:46-62. [PMID: 33979646 DOI: 10.1016/j.pbiomolbio.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
3
|
Aging as a consequence of selection to reduce the environmental risk of dying. Proc Natl Acad Sci U S A 2021; 118:2102088118. [PMID: 34031251 DOI: 10.1073/pnas.2102088118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Each animal in the Darwinian theater is exposed to a number of abiotic and biotic risk factors causing mortality. Several of these risk factors are intimately associated with the act of energy acquisition as such and with the amount of reserve the organism has available from this acquisition for overcoming temporary distress. Because a considerable fraction of an individual's lifetime energy acquisition is spent on somatic maintenance, there is a close link between energy expenditure on somatic maintenance and mortality risk. Here, we show, by simple life-history theory reasoning backed up by empirical cohort survivorship data, how reduction of mortality risk might be achieved by restraining allocation to somatic maintenance, which enhances lifetime fitness but results in aging. Our results predict the ubiquitous presence of senescent individuals in a highly diverse group of natural animal populations, which may display constant, increasing, or decreasing mortality with age. This suggests that allocation to somatic maintenance is primarily tuned to expected life span by stabilizing selection and is not necessarily traded against reproductive effort or other traits. Due to this ubiquitous strategy of modulating the somatic maintenance budget so as to increase fitness under natural conditions, it follows that individuals kept in protected environments with very low environmental mortality risk will have their expected life span primarily defined by somatic damage accumulation mechanisms laid down by natural selection in the wild.
Collapse
|
4
|
Koteswara Reddy G, Nagamalleswara Rao K, Yarrakula K. Insights into structure and function of 30S Ribosomal Protein S2 (30S2) in Chlamydophila pneumoniae: A potent target of pneumonia. Comput Biol Chem 2016; 66:11-20. [PMID: 27866051 DOI: 10.1016/j.compbiolchem.2016.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 02/01/2023]
Abstract
The gene 30S ribosomal protein S2 (30S2) is identified as a potential drug and vaccine target for Pneumonia. Its structural characterization is an important to understand the mechanism of action for identifying its receptor and/or other binding partners. The comparative genomics and proteomics studies are useful for structural characterization of 30S2 in C. Pneumoniae using different bioinformatics tools and web servers. In this study, the protein 30S2 structure was modelled and validated by Ramachandran plot. It is found that the modelled protein under most favoured "core" region was 88.7% and overall G-factor statistics with average score was -0.20. However, seven sequential motifs have been identified for 30S2 with reference codes (PR0095, PF0038, TIGR01012, PTHR11489, SSF52313 and PTHR11489). In addition, seven structural highly conserved residues have been identified in the large cleft are Lys160, Gly161and Arg162 with volume 1288.83Å3 and average depth of the cleft was 10.75Å. Moreover, biological functions, biochemical process and structural constituents of ribosome are also explored. The study will be helped us to understand the sequential, structural, functional and evolutionary clues of unknown proteins available in C. Pneumoniae.
Collapse
Affiliation(s)
- G Koteswara Reddy
- Centre for Disaster Mitigation and Management, VIT University, Vellore-632014, India.
| | | | - Kiran Yarrakula
- Centre for Disaster Mitigation and Management, VIT University, Vellore-632014, India
| |
Collapse
|
5
|
Noble D, Jablonka E, Joyner MJ, Müller GB, Omholt SW. Evolution evolves: physiology returns to centre stage. J Physiol 2015; 592:2237-44. [PMID: 24882808 DOI: 10.1113/jphysiol.2014.273151] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Denis Noble
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - Eva Jablonka
- Tel Aviv University, Cohn Institute for the History and Philosophy of Science and Ideas, Ramat Aviv, Israel
| | | | - Gerd B Müller
- University of Vienna, Department of Theoretical Biology, Vienna, Austria
| | - Stig W Omholt
- Norwegian University of Science and Technology, Faculty of Medicine, Trondheim, Norway
| |
Collapse
|
6
|
Vogt H, Ulvestad E, Eriksen TE, Getz L. Getting personal: can systems medicine integrate scientific and humanistic conceptions of the patient? J Eval Clin Pract 2014; 20:942-52. [PMID: 25312489 DOI: 10.1111/jep.12251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE, AIMS AND OBJECTIVES The practicing doctor, and most obviously the primary care clinician who encounters the full complexity of patients, faces several fundamental but intrinsically related theoretical and practical challenges - strongly actualized by so-called medically unexplained symptoms (MUS) and multi-morbidity. Systems medicine, which is the emerging application of systems biology to medicine and a merger of molecular biomedicine, systems theory and mathematical modelling, has recently been proposed as a primary care-centered strategy for medicine that promises to meet these challenges. Significantly, it has been proposed to do so in a way that at first glance may seem compatible with humanistic medicine. More specifically, it is promoted as an integrative, holistic, personalized and patient-centered approach. In this article, we ask whether and to what extent systems medicine can provide a comprehensive conceptual account of and approach to the patient and the root causes of health problems that can be reconciled with the concept of the patient as a person, which is an essential theoretical element in humanistic medicine. METHODS We answer this question through a comparative analysis of the theories of primary care doctor Eric Cassell and systems biologist Denis Noble. RESULTS AND CONCLUSIONS We argue that, although systems biological concepts, notably Noble's theory of biological relativity and downward causation, are highly relevant for understanding human beings and health problems, they are nevertheless insufficient in fully bridging the gap to humanistic medicine. Systems biologists are currently unable to conceptualize living wholes, and seem unable to account for meaning, value and symbolic interaction, which are central concepts in humanistic medicine, as constraints on human health. Accordingly, systems medicine as currently envisioned cannot be said to be integrative, holistic, personalized or patient-centered in a humanistic medical sense.
Collapse
Affiliation(s)
- Henrik Vogt
- General Practice Research Unit, Department of Public Health and General Practice, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | |
Collapse
|
7
|
Zamer WE, Scheiner SM. A conceptual framework for organismal biology: linking theories, models, and data. Integr Comp Biol 2014; 54:736-56. [PMID: 24935989 DOI: 10.1093/icb/icu075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Implicit or subconscious theory is especially common in the biological sciences. Yet, theory plays a variety of roles in scientific inquiry. First and foremost, it determines what does and does not count as a valid or interesting question or line of inquiry. Second, theory determines the background assumptions within which inquiries are pursued. Third, theory provides linkages among disciplines. For these reasons, it is important and useful to develop explicit theories for biology. A general theory of organisms is developed, which includes 10 fundamental principles that apply to all organisms, and 6 that apply to multicellular organisms only. The value of a general theory comes from its utility to help guide the development of more specific theories and models. That process is demonstrated by examining two domains: ecoimmunology and development. For the former, a constitutive theory of ecoimmunology is presented, and used to develop a specific model that explains energetic trade-offs that may result from an immunological response of a host to a pathogen. For the latter, some of the issues involved in trying to devise a constitutive theory that covers all of development are explored, and a more narrow theory of phenotypic novelty is presented. By its very nature, little of a theory of organisms will be new. Rather, the theory presented here is a formal expression of nearly two centuries of conceptual advances and practice in research. Any theory is dynamic and subject to debate and change. Such debate will occur as part of the present, initial formulation, as the ideas presented here are refined. The very process of debating the form of the theory acts to clarify thinking. The overarching goal is to stimulate debate about the role of theory in the study of organisms, and thereby advance our understanding of them.
Collapse
Affiliation(s)
- William E Zamer
- Biological Sciences Directorate, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| | - Samuel M Scheiner
- Biological Sciences Directorate, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| |
Collapse
|
8
|
Joyner MJ, Prendergast FG. Chasing Mendel: five questions for personalized medicine. J Physiol 2014; 592:2381-8. [PMID: 24882820 PMCID: PMC4048096 DOI: 10.1113/jphysiol.2014.272336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/08/2014] [Indexed: 01/11/2023] Open
Abstract
Ideas about personalized medicine are underpinned in part by evolutionary biology's Modern Synthesis. In this essay we link personalized medicine to the efforts of the early statistical investigators who quantified the heritability of human phenotype and then attempted to reconcile their observations with Mendelian genetics. As information about the heritability of common diseases was obtained, similar efforts were directed at understanding the genetic basis of disease phenotypes. These ideas were part of the rationale driving the Human Genome Project and subsequently the personalized medicine movement. In this context, we discuss: (1) the current state of the genotype-phenotype relationship in humans, (2) the common-disease-common-variant hypothesis, (3) the current ability of 'omic' information to inform clinical decision making, (4) emerging ideas about the therapeutic insight available from rare genetic variants, and (5) the social and behavioural barriers to the wider potential success of personalized medicine. There are significant gaps in knowledge as well as conceptual, intellectual, and philosophical limitations in each of these five areas. We then provide specific recommendations to mitigate these limitations and close by asking if it is time for the biomedical research community to 'stop chasing Mendel?'
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anaesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Franklyn G Prendergast
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Simeonov PL, Gomez-Ramirez J, Siregar P. On some recent insights in Integral Biomathics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:216-28. [PMID: 23806283 DOI: 10.1016/j.pbiomolbio.2013.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper summarizes the results in Integral Biomathics obtained to this moment and provides an outlook for future research in the field.
Collapse
|
10
|
|
11
|
Gjuvsland AB, Vik JO, Beard DA, Hunter PJ, Omholt SW. Bridging the genotype-phenotype gap: what does it take? J Physiol 2013; 591:2055-66. [PMID: 23401613 PMCID: PMC3634519 DOI: 10.1113/jphysiol.2012.248864] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The genotype-phenotype map (GP map) concept applies to any time point in the ontogeny of a living system. It is the outcome of very complex dynamics that include environmental effects, and bridging the genotype-phenotype gap is synonymous with understanding these dynamics. The context for this understanding is physiology, and the disciplinary goals of physiology do indeed demand the physiological community to seek this understanding. We claim that this task is beyond reach without use of mathematical models that bind together genetic and phenotypic data in a causally cohesive way. We provide illustrations of such causally cohesive genotype-phenotype models where the phenotypes span from gene expression profiles to development of whole organs. Bridging the genotype-phenotype gap also demands that large-scale biological ('omics') data and associated bioinformatics resources be more effectively integrated with computational physiology than is currently the case. A third major element is the need for developing a phenomics technology way beyond current state of the art, and we advocate the establishment of a Human Phenome Programme solidly grounded on biophysically based mathematical descriptions of human physiology.
Collapse
Affiliation(s)
- Arne B Gjuvsland
- Centre for Integrative Genetics, Department of Mathematical and Technological Sciences, Norwegian University of Life Sciences, Norway
| | | | | | | | | |
Collapse
|