1
|
Sidhu JS, Ajmera I, Arya S, Lynch JP. RootSlice-A novel functional-structural model for root anatomical phenotypes. PLANT, CELL & ENVIRONMENT 2023; 46:1671-1690. [PMID: 36708192 DOI: 10.1111/pce.14552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Sankalp Arya
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| |
Collapse
|
2
|
De Vos D, Nelissen H, AbdElgawad H, Prinsen E, Broeckhove J, Inzé D, Beemster GT. How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone. THE NEW PHYTOLOGIST 2020; 225:2513-2525. [PMID: 31705666 PMCID: PMC7116270 DOI: 10.1111/nph.16315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/02/2019] [Indexed: 05/07/2023]
Abstract
We studied the maize leaf to understand how long-distance signals, auxin and cytokinin, control leaf growth dynamics. We constructed a mathematical model describing the transport of these hormones along the leaf growth zone and their interaction with the local gibberellin (GA) metabolism in the control of cell division. Assuming gradually declining auxin and cytokinin supply at the leaf base, the model generated spatiotemporal hormone distribution and growth patterns that matched experimental data. At the cellular level, the model predicted a basal leaf growth as a result of cell division driven by auxin and cytokinin. Superimposed on this, GA synthesis regulated growth through the control of the size of the region of active cell division. The predicted hormone and cell length distributions closely matched experimental data. To correctly predict the leaf growth profiles and final organ size of lines with reduced or elevated GA production, the model required a signal proportional to the size of the emerged part of the leaf that inhibited the basal leaf growth driven by auxin and cytokinin. Excision and shading of the emerged part of the growing leaf allowed us to demonstrate that this signal exists and depends on the perception of light intensity.
Collapse
Affiliation(s)
- Dirk De Vos
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Modeling Of Systems And Internet Communication (MOSAIC), Department of Mathematics and Informatics, University of Antwerp, 2020 Antwerp, Belgium
- Corresponding Authors ,+32 3 265 34 21 , +32 3 265 34 21
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Els Prinsen
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Jan Broeckhove
- Modeling Of Systems And Internet Communication (MOSAIC), Department of Mathematics and Informatics, University of Antwerp, 2020 Antwerp, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Gerrit T.S. Beemster
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Corresponding Authors ,+32 3 265 34 21 , +32 3 265 34 21
| |
Collapse
|
3
|
Ajmera I, Hodgman TC, Lu C. An Integrative Systems Perspective on Plant Phosphate Research. Genes (Basel) 2019; 10:E139. [PMID: 30781872 PMCID: PMC6410211 DOI: 10.3390/genes10020139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security.
Collapse
Affiliation(s)
- Ishan Ajmera
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - T Charlie Hodgman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0 QF, UK.
| |
Collapse
|
4
|
Vilasboa J, Da Costa CT, Fett-Neto AG. Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:85-97. [PMID: 30557533 DOI: 10.1016/j.pbiomolbio.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Species of Eucalyptus are some of the most planted trees in the world, providing fiber, cellulose, energy, and wood for construction and furniture in renewable fashion, with the added advantage of fixing large amounts of atmospheric carbon. The efficiency of eucalypts in forestry relies mostly on the clonal propagation of selected genotypes both as pure species and interspecific hybrids. The formation of new roots from cambium tissues at the base of cuttings, referred to as adventitious rooting (AR), is essential for accomplishing clonal propagation successfully. AR is a highly complex, multi-level regulated developmental process, affected by a number of endogenous and environmental factors. In several cases, highly desirable genotypes from an industrial point of view carry along the undesirable trait of difficulty-to-root (recalcitrance). Understanding the bases of this phenotype is needed to identify ways to overcome recalcitrance and allow efficient clonal propagation. Herein, an overview of the state-of-the-art on the basis of AR recalcitrance in eucalypts addressed at various levels of regulation (transcript, protein, metabolite and phenotype), and OMICs techniques is presented. In addition, a focus is also provided on the gaps that need to be filled in order to advance in this strategic biological problem for global forestry industry relying on eucalypts.
Collapse
Affiliation(s)
- Johnatan Vilasboa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Cibele Tesser Da Costa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Arthur Germano Fett-Neto
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
5
|
De Vos D, Dzhurakhalov A, Stijven S, Klosiewicz P, Beemster GTS, Broeckhove J. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation. FRONTIERS IN PLANT SCIENCE 2017; 8:686. [PMID: 28523006 PMCID: PMC5415617 DOI: 10.3389/fpls.2017.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/13/2017] [Indexed: 05/11/2023]
Abstract
Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io.
Collapse
Affiliation(s)
- Dirk De Vos
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of AntwerpAntwerp, Belgium
| | - Abdiravuf Dzhurakhalov
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of AntwerpAntwerp, Belgium
| | - Sean Stijven
- Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of AntwerpAntwerp, Belgium
| | - Przemyslaw Klosiewicz
- Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Jan Broeckhove
- Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of AntwerpAntwerp, Belgium
| |
Collapse
|
6
|
Henney A, Hunter P, McCulloch A, Noble D. Multi-bio and multi-scale systems biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:1-3. [PMID: 25783046 DOI: 10.1016/j.pbiomolbio.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|