1
|
Huang YH, Huang CY. Anti-Skin Aging Potential, Antibacterial Activity, Inhibition of Single-Stranded DNA-Binding Protein, and Cytotoxic Effects of Acetone-Extracted Passiflora edulis (Tainung No. 1) Rind Extract on Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2194. [PMID: 39204630 PMCID: PMC11359509 DOI: 10.3390/plants13162194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The passion fruit, Passiflora edulis, recognized for its rich nutritional properties, has long been used for its varied ethnobotanical applications. This study investigates the therapeutic potential of P. edulis var. Tainung No. 1 rind extracts by examining their polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes such as elastase, tyrosinase, and hyaluronidase, and their ability to inhibit bacterial growth, single-stranded DNA-binding protein (SSB), and their cytotoxic effects on oral carcinoma cells. The acetone extract from the rind exhibited the highest levels of TPC, TFC, anti-SSB, and antibacterial activities. The antibacterial effectiveness of the acetone-extracted rind was ranked as follows: Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus. A titration curve for SSB inhibition showed an IC50 value of 313.2 μg/mL, indicating the potency of the acetone extract in inhibiting SSB. It also significantly reduced the activity of enzymes associated with skin aging, particularly tyrosinase, with a 54.5% inhibition at a concentration of 100 μg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified several major bioactive compounds in the acetone extract, including stigmast-5-en-3-ol, vitamin E, palmitic acid, stigmasterol, linoleic acid, campesterol, and octadecanoic acid. Molecular docking studies suggested some of these compounds as potential inhibitors of tyrosinase and SSB. Furthermore, the extract demonstrated anticancer potential against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation and inducing apoptosis. These results underscore the potential of P. edulis (Tainung No. 1) rind as a promising candidate for anti-skin aging, antibacterial, and anticancer applications, meriting further therapeutic investigation.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
2
|
Breidenstein A, Lamy A, Bader CP, Sun WS, Wanrooij PH, Berntsson RPA. PrgE: an OB-fold protein from plasmid pCF10 with striking differences to prototypical bacterial SSBs. Life Sci Alliance 2024; 7:e202402693. [PMID: 38811160 PMCID: PMC11137577 DOI: 10.26508/lsa.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.
Collapse
Affiliation(s)
- Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anaïs Lamy
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Cyrielle Pj Bader
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Pipalović G, Filić Ž, Ćehić M, Paradžik T, Zahradka K, Crnolatac I, Vujaklija D. Impact of C-terminal domains of paralogous single-stranded DNA binding proteins from Streptomyces coelicolor on their biophysical properties and biological functions. Int J Biol Macromol 2024; 268:131544. [PMID: 38614173 DOI: 10.1016/j.ijbiomac.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.
Collapse
Affiliation(s)
- Goran Pipalović
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Želimira Filić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Mirsada Ćehić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| | - Dušica Vujaklija
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
4
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
6
|
Su HH, Huang YH, Lien Y, Yang PC, Huang CY. Crystal Structure of DNA Replication Protein SsbA Complexed with the Anticancer Drug 5-Fluorouracil. Int J Mol Sci 2023; 24:14899. [PMID: 37834349 PMCID: PMC10573954 DOI: 10.3390/ijms241914899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA metabolism by binding and stabilizing single-stranded DNA (ssDNA) intermediates. Through their multifaceted roles in DNA replication, recombination, repair, replication restart, and other cellular processes, SSB emerges as a central player in maintaining genomic integrity. These attributes collectively position SSBs as essential guardians of genomic integrity, establishing interactions with an array of distinct proteins. Unlike Escherichia coli, which contains only one type of SSB, some bacteria have two paralogous SSBs, referred to as SsbA and SsbB. In this study, we identified Staphylococcus aureus SsbA (SaSsbA) as a fresh addition to the roster of the anticancer drug 5-fluorouracil (5-FU) binding proteins, thereby expanding the ambit of the 5-FU interactome to encompass this DNA replication protein. To investigate the binding mode, we solved the complexed crystal structure with 5-FU at 2.3 Å (PDB ID 7YM1). The structure of glycerol-bound SaSsbA was also determined at 1.8 Å (PDB ID 8GW5). The interaction between 5-FU and SaSsbA was found to involve R18, P21, V52, F54, Q78, R80, E94, and V96. Based on the collective results from mutational and structural analyses, it became evident that SaSsbA's mode of binding with 5-FU diverges from that of SaSsbB. This complexed structure also holds the potential to furnish valuable comprehension regarding how 5-FU might bind to and impede analogous proteins in humans, particularly within cancer-related signaling pathways. Leveraging the information furnished by the glycerol and 5-FU binding sites, the complexed structures of SaSsbA bring to the forefront the potential viability of several interactive residues as potential targets for therapeutic interventions aimed at curtailing SaSsbA activity. Acknowledging the capacity of microbiota to influence the host's response to 5-FU, there emerges a pressing need for further research to revisit the roles that bacterial and human SSBs play in the realm of anticancer therapy.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Po-Chun Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
7
|
Radford HM, Toft CJ, Sorenson AE, Schaeffer PM. Inhibition of Replication Fork Formation and Progression: Targeting the Replication Initiation and Primosomal Proteins. Int J Mol Sci 2023; 24:ijms24108802. [PMID: 37240152 DOI: 10.3390/ijms24108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication is still a largely underexplored target. This review summarises critical literature and synthesises our current understanding of DNA replication initiation in bacteria with a particular focus on the utility and applicability of essential initiation proteins as emerging drug targets. A critical evaluation of the specific methods available to examine and screen the most promising replication initiation proteins is provided.
Collapse
Affiliation(s)
- Holly M Radford
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| |
Collapse
|
8
|
Bonde NJ, Henry C, Wood EA, Cox MM, Keck J. Interaction with the carboxy-terminal tip of SSB is critical for RecG function in E. coli. Nucleic Acids Res 2023; 51:3735-3753. [PMID: 36912097 PMCID: PMC10164576 DOI: 10.1093/nar/gkad162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Madru C, Martínez-Carranza M, Laurent S, Alberti AC, Chevreuil M, Raynal B, Haouz A, Le Meur RA, Delarue M, Henneke G, Flament D, Krupovic M, Legrand P, Sauguet L. DNA-binding mechanism and evolution of replication protein A. Nat Commun 2023; 14:2326. [PMID: 37087464 PMCID: PMC10122647 DOI: 10.1038/s41467-023-38048-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes.
Collapse
Affiliation(s)
- Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Sébastien Laurent
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Alessandra C Alberti
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Maelenn Chevreuil
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Rémy A Le Meur
- Biological NMR Platform & HDX, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Didier Flament
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 6047, Paris, France
| | - Pierre Legrand
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
10
|
Tököli A, Bodnár B, Bogár F, Paragi G, Hetényi A, Bartus É, Wéber E, Hegedüs Z, Szabó Z, Kecskeméti G, Szakonyi G, Martinek TA. Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design. Pharmaceutics 2023; 15:1032. [PMID: 37111518 PMCID: PMC10143822 DOI: 10.3390/pharmaceutics15041032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide-protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy-entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands.
Collapse
Affiliation(s)
- Attila Tököli
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Brigitta Bodnár
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- Institute of Physics, University of Pécs, H7624 Pécs, Hungary
- Department of Theoretical Physics, University of Szeged, H6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Edit Wéber
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, University of Szeged, H6720 Szeged, Hungary
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| |
Collapse
|
11
|
Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses 2023; 15:v15020557. [PMID: 36851771 PMCID: PMC9963768 DOI: 10.3390/v15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
African Swine Fever (ASF) is a highly contagious and lethal pig disease and poses a huge threat to the pig industry worldwide. ASF virus (ASFV) encodes more than 150 different proteins, but the biological properties of most viral proteins are still unknown. ASFV CP312R protein has been proven to be one of the most immunogenic proteins during ASFV infection in pigs; however, its specific epitopes have yet to be identified. In this study, we verified the immunogenicity of CP312R protein in the sera from attenuated ASFV-inoculated pigs. We generated seven anti-ASFV CP312R mouse monoclonal antibodies (mAbs) from mice immunized with recombinant CP312R protein (rCP312R). All seven mAbs are the IgG2b-Kappa isotype and specifically interacted with the CP312R protein expressed in various cells that were infected by ASFVs or transfected with plasmid CP312R. The epitope mapping was performed by using these characterized mAbs and the peptide scanning (Pepscan) method followed by Western blot. As a result, two antigenic determinant regions were identified: two of the seven mAbs recognized the 122KNEQGEEIYP131 amino acids, and the remaining five mAbs recognized the 78DEEVIRMNAE87 amino acids of the CP312R protein. These antigenic determinants of CP312R are conserved in different ASFV strains of seven genotypes. By using the characterized mAb, confocal microscopy observation revealed that the CP312R was mainly localized in the cytoplasm and, to some extent, in nuclei and on the nuclear membrane of infected host cells. In summary, our results benefit our understanding on the antigenic regions of ASFV CP312R and help to develop better serological diagnosis of ASF and vaccine research.
Collapse
|
12
|
Yin J, Fu Y, Rao G, Li Z, Tian K, Chong T, Kuang K, Wang M, Hu Z, Cao S. Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA. Nucleic Acids Res 2022; 50:13100-13113. [PMID: 36477586 PMCID: PMC9825184 DOI: 10.1093/nar/gkac1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) interact with single-stranded DNA (ssDNA) to form filamentous structures with various degrees of cooperativity, as a result of intermolecular interactions between neighboring SSB subunits on ssDNA. However, it is still challenging to perform structural studies on SSB-ssDNA filaments at high resolution using the most studied SSB models, largely due to the intrinsic flexibility of these nucleoprotein complexes. In this study, HaLEF-3, an SSB protein from Helicoverpa armigera nucleopolyhedrovirus, was used for in vitro assembly of SSB-ssDNA filaments, which were structurally studied at atomic resolution using cryo-electron microscopy. Combined with the crystal structure of ssDNA-free HaLEF-3 octamers, our results revealed that the three-dimensional rearrangement of HaLEF-3 induced by an internal hinge-bending movement is essential for the formation of helical SSB-ssDNA complexes, while the contacting interface between adjacent HaLEF-3 subunits remains basically intact. We proposed a local cooperative SSB-ssDNA binding model, in which, triggered by exposure to oligonucleotides, HaLEF-3 molecules undergo ring-to-helix transition to initiate continuous SSB-SSB interactions along ssDNA. Unique structural features revealed by the assembly of HaLEF-3 on ssDNA suggest that HaLEF-3 may represent a new class of SSB.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kexing Tian
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingting Chong
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kai Kuang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Sheng Cao
- To whom correspondence should be addressed. Tel: +86 27 87198286; Fax: +86 27 87198286;
| |
Collapse
|
13
|
Liu HW, Chiang WY, Huang YH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Sarracenia purpurea against Melanoma Cells and the SsbA Protein. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223164. [PMID: 36432892 PMCID: PMC9692666 DOI: 10.3390/plants11223164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 06/12/2023]
Abstract
The Staphylococcus aureus SsbA protein (SaSsbA) is a single-stranded DNA-binding protein (SSB) that is categorically required for DNA replication and cell survival, and it is thus an attractive target for potential antipathogen chemotherapy. In this study, we prepared the stem extract of Sarracenia purpurea obtained from 100% acetone to investigate its inhibitory effect against SaSsbA. In addition, the cytotoxic effects of this extract on the survival, apoptosis, proliferation, and migration of B16F10 melanoma cells were also examined. Initially, myricetin, quercetin, kaempferol, dihydroquercetin, dihydrokaempferol, rutin, catechin, β-amyrin, oridonin, thioflavin T, primuline, and thioflavin S were used as possible inhibitors against SaSsbA. Of these compounds, dihydrokaempferol and oridonin were capable of inhibiting the ssDNA-binding activity of SaSsbA with respective IC50 values of 750 ± 62 and 2607 ± 242 μM. Given the poor inhibition abilities of dihydrokaempferol and oridonin, we screened the extracts of S. purpurea, Nepenthes miranda, and Plinia cauliflora for SaSsbA inhibitors. The stem extract of S. purpurea exhibited high anti-SaSsbA activity, with an IC50 value of 4.0 ± 0.3 μg/mL. The most abundant compounds in the stem extract of S. purpurea were identified using gas chromatography−mass spectrometry. The top five most abundant contents in this extract were driman-8,11-diol, deoxysericealactone, stigmast-5-en-3-ol, apocynin, and α-amyrin. Using the MOE-Dock tool, the binding modes of these compounds, as well as dihydrokaempferol and oridonin, to SaSsbA were elucidated, and their binding energies were also calculated. Based on the S scores, the binding capacity of these compounds was in the following order: deoxysericealactone > dihydrokaempferol > apocynin > driman-8,11-diol > stigmast-5-en-3-ol > oridonin > α-amyrin. Incubation of B16F10 cells with the stem extract of S. purpurea at a concentration of 100 μg/mL caused deaths at the rate of 76%, reduced migration by 95%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. Overall, the collective data in this study indicate the pharmacological potential of the stem extract of S. purpurea for further medical applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Department of Rheumatology and Immunology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Wei-Yu Chiang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yen-Hua Huang
- Department of Rheumatology and Immunology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
14
|
Qian J, Zheng M, Wang L, Song Y, Yan J, Hsu YF. Arabidopsis mitochondrial single-stranded DNA-binding proteins SSB1 and SSB2 are essential regulators of mtDNA replication and homologous recombination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1952-1965. [PMID: 35925893 DOI: 10.1111/jipb.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.
Collapse
Affiliation(s)
- Jie Qian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
15
|
Purkait D, Islam F, Mishra PP. A single-molecule approach to unravel the molecular mechanism of the action of Deinococcus radiodurans RecD2 and its interaction with SSB and RecA in DNA repair. Int J Biol Macromol 2022; 221:653-664. [PMID: 36096248 DOI: 10.1016/j.ijbiomac.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Helicases are ATP-driven molecular machines that directionally remodel nucleic acid polymers in all three domains of life. They are responsible for resolving double-stranded DNA (dsDNA) into single-strands, which is essential for DNA replication, nucleotide excision repair, and homologous recombination. RecD2 from Deinococcus radiodurans (DrRecD2) has important contributions to the organism's unusually high tolerance to gamma radiation and hydrogen peroxide. Although the results from X-ray Crystallography studies have revealed the structural characteristics of the protein, direct experimental evidence regarding the dynamics of the DNA unwinding process by DrRecD2 in the context of other accessory proteins is yet to be found. In this study, we have probed the exact binding event and processivity of DrRecD2 at single-molecule resolution using Protein-induced fluorescence enhancement (smPIFE) and Forster resonance energy transfer (smFRET). We have found that the protein prefers to bind at the 5' terminal end of the single-stranded DNA (ssDNA) by Drift and has helicase activity even in absence of ATP. However, a faster and iterative mode of DNA unwinding was evident in presence of ATP. The rate of translocation of the protein was found to be slower on dsDNA compared to ssDNA. We also showed that DrRecD2 is recruited at the binding site by the single-strand binding protein (SSB) and during the unwinding, it can displace RecA from ssDNA.
Collapse
Affiliation(s)
- Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Padmaja P Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
16
|
Laureti L, Lee L, Philippin G, Kahi M, Pagès V. Single strand gap repair: The presynaptic phase plays a pivotal role in modulating lesion tolerance pathways. PLoS Genet 2022; 18:e1010238. [PMID: 35653392 PMCID: PMC9203016 DOI: 10.1371/journal.pgen.1010238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/16/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.
Collapse
Affiliation(s)
- Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Lara Lee
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Philippin
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michel Kahi
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
17
|
Lin ES, Huang YH, Luo RH, Basharat Z, Huang CY. Crystal Structure of an SSB Protein from Salmonella enterica and Its Inhibition by Flavanonol Taxifolin. Int J Mol Sci 2022; 23:ijms23084399. [PMID: 35457218 PMCID: PMC9029707 DOI: 10.3390/ijms23084399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) play a central role in cells by participating in DNA metabolism, including replication, repair, recombination, and replication fork restart. SSBs are essential for cell survival and thus an attractive target for potential anti-pathogen chemotherapy. In this study, we determined the crystal structure and examined the size of the ssDNA-binding site of an SSB from Salmonella enterica serovar Typhimurium LT2 (SeSSB), a ubiquitous opportunistic pathogen which is highly resistant to antibiotics. The crystal structure was solved at a resolution of 2.8 Å (PDB ID 7F25), indicating that the SeSSB monomer possesses an oligonucleotide/oligosaccharide-binding (OB) fold domain at its N-terminus and a flexible tail at its C-terminus. The core of the OB-fold in the SeSSB is made of a six-stranded β-barrel capped by an α-helix. The crystal structure of the SeSSB contained two monomers per asymmetric unit, which may indicate the formation of a dimer. However, the gel-filtration chromatography analysis showed that the SeSSB forms a tetramer in solution. Through an electrophoretic mobility shift analysis, we characterized the stoichiometry of the SeSSB complexed with a series of ssDNA dA homopolymers, and the size of the ssDNA-binding site was determined to be around 22 nt. We also found the flavanonol taxifolin, also known as dihydroquercetin, capable of inhibiting the ssDNA-binding activity of the SeSSB. Thus, this result extended the SSB interactome to include taxifolin, a natural product with a wide range of promising pharmacological activities.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San min Rd., Taichung City 403, Taiwan;
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Ren-Hong Luo
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Glutamate brings out the flavor of SSB cooperativity and phase separation. J Mol Biol 2022; 434:167580. [PMID: 35395234 DOI: 10.1016/j.jmb.2022.167580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
20
|
Shen Z, Tang CM, Liu GY. Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids? Mil Med Res 2022; 9:3. [PMID: 35012680 PMCID: PMC8744291 DOI: 10.1186/s40779-021-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Collapse
Affiliation(s)
- Zhen Shen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.,Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Guang-Yu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
21
|
A Complexed Crystal Structure of a Single-Stranded DNA-Binding Protein with Quercetin and the Structural Basis of Flavonol Inhibition Specificity. Int J Mol Sci 2022; 23:ijms23020588. [PMID: 35054774 PMCID: PMC8775380 DOI: 10.3390/ijms23020588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 μM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31° for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.
Collapse
|
22
|
Qian J, Li M, Zheng M, Hsu YF. Arabidopsis SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response and Mitochondrial RNA Splicing. PLANT & CELL PHYSIOLOGY 2021; 62:1321-1334. [PMID: 34185867 DOI: 10.1093/pcp/pcab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A mitochondrion is a semiautonomous organelle that provides energy for life activities and balances plant growth and stress responses. Abscisic acid (ABA) regulates multiple physiological processes, including seed maturation, seed dormancy, stomatal closure and various abiotic stress responses. However, the relationship between mitochondrial activity and the ABA response is unclear. In this study, an Arabidopsis mutant, ssb1-1, was isolated because of its hypersensitivity toward ABA. Assessment results showed that ABA negatively regulates the expression of Arabidopsis SSB1. Mutations in ABA-insensitive 4 (ABI4) and ABI5, genes of key transcription factors involved in ABA-dependent seed dormancy, attenuated the ABA sensitivity of ssb1-1 during germination, suggesting that Arabidopsis SSB1 may act as a regulator in ABA response. Inhibition of endogenous ABA biosynthesis reversed the NaCl-sensitive phenotype of the ssb1-1 mutant, indicating that enhanced ABA biosynthesis is critical for the salinity stress response of ssb1-1. Moreover, compared to that of the wild type, ssb1-1 accumulated more reactive oxygen species (ROS) and exhibited increased sensitivity to the application of exogenous H2O2 during seed germination. SSB1 is also required for mitochondrial RNA splicing, as indicated by the result showing that SSB1 loss of function led to a decreased splicing efficiency of nad1 intron1 and nad2 intron1. Taken together, our data reported here provide insights into a novel role of Arabidopsis SSB1 in ABA signaling and mitochondrial RNA splicing.
Collapse
Affiliation(s)
- Jie Qian
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Meng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Lin ES, Huang YH, Huang CY. Characterization of the Chimeric PriB-SSBc Protein. Int J Mol Sci 2021; 22:ijms221910854. [PMID: 34639195 PMCID: PMC8509808 DOI: 10.3390/ijms221910854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023] Open
Abstract
PriB is a primosomal protein required for the replication fork restart in bacteria. Although PriB shares structural similarity with SSB, they bind ssDNA differently. SSB consists of an N-terminal ssDNA-binding/oligomerization domain (SSBn) and a flexible C-terminal protein–protein interaction domain (SSBc). Apparently, the largest difference in structure between PriB and SSB is the lack of SSBc in PriB. In this study, we produced the chimeric PriB-SSBc protein in which Klebsiella pneumoniae PriB (KpPriB) was fused with SSBc of K. pneumoniae SSB (KpSSB) to characterize the possible SSBc effects on PriB function. The crystal structure of KpSSB was solved at a resolution of 2.3 Å (PDB entry 7F2N) and revealed a novel 114-GGRQ-117 motif in SSBc that pre-occupies and interacts with the ssDNA-binding sites (Asn14, Lys74, and Gln77) in SSBn. As compared with the ssDNA-binding properties of KpPriB, KpSSB, and PriB-SSBc, we observed that SSBc could significantly enhance the ssDNA-binding affinity of PriB, change the binding behavior, and further stimulate the PriA activity (an initiator protein in the pre-primosomal step of DNA replication), but not the oligomerization state, of PriB. Based on these experimental results, we discuss reasons why the properties of PriB can be retrofitted when fusing with SSBc.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San-Min Rd., Taichung City 403, Taiwan;
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
25
|
Tan HY, Bianco PR. SSB Facilitates Fork-Substrate Discrimination by the PriA DNA Helicase. ACS OMEGA 2021; 6:16324-16335. [PMID: 34235303 PMCID: PMC8246471 DOI: 10.1021/acsomega.1c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Primosomal protein A (PriA) is a member of helicase SuperFamily 2. Its role in vivo is to reload the primosome onto resurrected replication forks resulting in the restart of the previously stalled DNA replication process. Single-stranded DNA-binding protein (SSB) plays a key role in mediating activities at replication forks and interacts both physically and functionally with PriA. To gain a mechanistic insight into the PriA-SSB interaction, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of PriA in vitro in the presence of fork substrates. The results demonstrate that SSB enhances the ability of PriA to discriminate between fork substrates as much as 140-fold. This is due to a significant increase in the catalytic efficiency of the helicase induced by SSB. This interaction is species-specific as bacteriophage gene 32 protein cannot substitute for the Escherichia coli protein. SSB, while enhancing the activity of PriA on its preferred fork decreases both the affinity of the helicase for other forks and the catalytic efficiency. Central to the stimulation afforded by SSB is the unique ability of PriA to bind with high affinity to the 3'-OH placed at the end of the nascent leading strand at the fork. When both the 3'-OH and SSB are present, the maximum effect on the ATPase activity of the helicase is observed. This ensures that PriA will load onto the correct fork, in the right orientation, thereby ensuring that replication restart is directed to only the template lagging strand.
Collapse
Affiliation(s)
| | - Piero R. Bianco
- Department of Pharmaceutical Sciences,
College of Pharmacy, University of Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
26
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
27
|
Comparing SSB-PriA Functional and Physical Interactions in Gram-Positive and -Negative Bacteria. Methods Mol Biol 2021; 2281:67-80. [PMID: 33847952 DOI: 10.1007/978-1-0716-1290-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-stranded DNA (ssDNA)-binding protein (SSB) is essential for DNA metabolic processes. SSB also binds to many DNA-binding proteins that constitute the SSB interactome. The mechanism through which PriA helicase, an initiator protein in the DNA replication restart process, is stimulated by SSB in Escherichia coli (EcSSB) has been established. However, some Gram-positive bacterial SSBs such as Bacillus subtilis SsbA (a counterpart of EcSSB), Staphylococcus aureus SsbA, SsbB, and SsbC do not activate PriA helicase. Here, we describe some of the methods used in our laboratory to compare SSB-PriA functional and physical interactions in Gram-positive and -negative bacteria.
Collapse
|
28
|
Yu C, Bianco PR. In Vivo Binding of Single-Stranded DNA-Binding Protein to Stalled Replication Fork Helicases. Methods Mol Biol 2021; 2281:81-91. [PMID: 33847953 PMCID: PMC9476560 DOI: 10.1007/978-1-0716-1290-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding protein-protein interactions is key to unraveling protein function in vivo. Here we describe a dual/triple-plasmid system that enables co-expression of two, or three, recombinant proteins harboring different affinity tags in the same Escherichia coli cell. This novel protein expression system provides a platform to understand protein-protein interactions and enables researchers to study protein complex formation and in vivo localization.
Collapse
Affiliation(s)
- Cong Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
29
|
Abstract
Single-stranded (ss) DNA-binding proteins are found in all three domains of life where they play vital roles in nearly all aspects of DNA metabolism by binding to and stabilizing exposed ssDNA and acting as platforms onto which DNA-processing activities can assemble. The ssDNA-binding factors SSB and RPA are extremely well conserved across bacteria and eukaryotes, respectively, and comprise one or more OB-fold ssDNA-binding domains. In the third domain of life, the archaea, multiple types of ssDNA-binding protein are found with a variety of domain architectures and subunit compositions, with OB-fold ssDNA-binding domains being a characteristic of most, but not all. This chapter summarizes current knowledge of the distribution, structure, and biological function of the archaeal ssDNA-binding factors, highlighting key features shared between clades and those that distinguish the proteins of different clades from one another. The likely cellular functions of the proteins are discussed and gaps in current knowledge identified.
Collapse
Affiliation(s)
- Najwa Taib
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
- Hub Bioinformatics and Biostatistics, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
30
|
Lin ES, Huang CY. Crystal structure of the single-stranded DNA-binding protein SsbB in complex with the anticancer drug 5-fluorouracil: Extension of the 5-fluorouracil interactome to include the oligonucleotide/oligosaccharide-binding fold protein. Biochem Biophys Res Commun 2020; 534:41-46. [PMID: 33310186 DOI: 10.1016/j.bbrc.2020.11.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential to cells because they participate in DNA metabolic processes, such as DNA replication, repair, and recombination. Some bacteria possess more than one paralogous SSB. Three similar SSBs, namely, SsbA, SsbB, and SsbC, are found in Staphylococcus aureus. Whether the FDA-approved clinical drug 5-fluorouracil (5-FU) that is used to target the enzyme thymidylate synthase for anticancer therapy can also bind to SSBs remains unknown. In this study, we found that 5-FU could form a stable complex with S. aureus SsbB (SaSsbB). We cocrystallized 5-FU with SaSsbB and solved complex structures to assess binding modes. Two complex forms of the structures were determined, namely, the individual asymmetric unit (two SaSsbB monomers) containing one (PDB entry 7D8J) or two 5-FU molecules (PDB entry 7DEP). The locations of 5-FU in these two SaSsbB complexes were similar regardless of the binding ratio. The structures revealed that residues T12, K13, T30, F48, and N50 of SaSsbB were involved in 5-FU binding. The mutations of T12, K13, and F48 caused the low 5-FU binding activity of SaSsbB, a result consistent with the structural analysis results. Taken together, the complexed structure and the binding mode analysis of SaSsbB extended the anticancer drug 5-FU interactome to include the oligonucleotide/oligosaccharide-binding fold protein.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No.193 Sec.1 San-Min Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110 Sec.1 Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110 Sec.1 Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
31
|
Double strand break (DSB) repair in Cyanobacteria: Understanding the process in an ancient organism. DNA Repair (Amst) 2020; 95:102942. [DOI: 10.1016/j.dnarep.2020.102942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
|
32
|
Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A 2020; 117:26206-26217. [PMID: 33020264 PMCID: PMC7584906 DOI: 10.1073/pnas.2000761117] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must rapidly and efficiently react to DNA damage to avoid its harmful consequences. Here we report a molecular mechanism that gives rise to a model of how bacterial cells mobilize DNA repair proteins for timely response to genomic stress and initiation of DNA repair upon exposure of single-stranded DNA. We found that bacterial single-stranded DNA binding protein (SSB), a central player in genome metabolism, can undergo dynamic phase separation under physiological conditions. SSB condensates can store a wide array of DNA repair proteins that specifically interact with SSB. However, elevated levels of single-stranded DNA during genomic stress can dissolve SSB condensates, enabling rapid mobilization of SSB and SSB-interacting proteins to sites of DNA damage. Bacterial single-stranded (ss)DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL), and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein−protein interactions with DNA-metabolizing proteins. Here we show that the Escherichia coli SSB protein forms liquid−liquid phase-separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA, and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.
Collapse
|
33
|
Dubiel K, Henry C, Spenkelink LM, Kozlov AG, Wood EA, Jergic S, Dixon NE, van Oijen AM, Cox MM, Lohman TM, Sandler SJ, Keck JL. Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Res 2020; 48:6053-6067. [PMID: 32374866 PMCID: PMC7293020 DOI: 10.1093/nar/gkaa320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.
Collapse
Affiliation(s)
- Katarzyna Dubiel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Sandler
- Department of Microbiology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
34
|
Ding W, Tan HY, Zhang JX, Wilczek LA, Hsieh KR, Mulkin JA, Bianco PR. The mechanism of Single strand binding protein-RecG binding: Implications for SSB interactome function. Protein Sci 2020; 29:1211-1227. [PMID: 32196797 PMCID: PMC7184773 DOI: 10.1002/pro.3855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
The Escherichia coli single-strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single-stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide-oligonucleotide binding folds (OB-fold) present in SSB and its interactome partners. Not surprisingly, partner OB-fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB-fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C-terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C-terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB-folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB-folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB-fold genome guardians identified in prokaryotes.
Collapse
Affiliation(s)
- Wenfei Ding
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| | - Hui Yin Tan
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Present address:
Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndianaUnited States
| | - Jia Xiang Zhang
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| | - Luke A. Wilczek
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
- Present address:
Department of ChemistryBrown UniversityProvidenceRhode IslandUnited States
| | - Karin R. Hsieh
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
| | - Jeffrey A. Mulkin
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
| | - Piero R. Bianco
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| |
Collapse
|
35
|
Bianco PR. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes (Basel) 2020; 11:E471. [PMID: 32357475 PMCID: PMC7290993 DOI: 10.3390/genes11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, NY 14221, USA
| |
Collapse
|
36
|
Wang Y, Sun Z, Bianco PR, Lyubchenko YL. Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks. J Biol Chem 2020; 295:6043-6052. [PMID: 32209655 DOI: 10.1074/jbc.ra120.013013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/21/2020] [Indexed: 01/31/2023] Open
Abstract
In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA-binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, New York 14214
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025.
| |
Collapse
|
37
|
Sun Z, Wang Y, Bianco PR, Lyubchenko YL. Nanoscale interaction of RecG with mobile fork DNA. NANOSCALE ADVANCES 2020; 2:1318-1324. [PMID: 33791509 PMCID: PMC8009289 DOI: 10.1039/c9na00712a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 06/12/2023]
Abstract
The RecG DNA helicase is a guardian of the bacterial genome where it dominates stalled DNA replication fork rescue. The single-stranded DNA binding protein (SSB) is involved in this process and promotes the binding of RecG to stalled replication forks. Atomic force microscopy (AFM) was used to investigate the interaction of RecG and SSB on a mobile fork substrate capable of being regressed. In the absence of proteins, the fork undergoes spontaneous dynamics between two states defined by the length of the DNA complementarity at the fork. Binding of SSB does not affect these dynamics as it binds to single-stranded regions as expected. In contrast, RecG interacts with the two states quite differently. We demonstrate that RecG has two modes of interaction with fork DNA in the presence of SSB and ATP. In the first mode, RecG translocates over the duplex region and this activity is defined by SSB-mediated remodeling of the helicase. In the second mode, RecG utilizes its helicase activity to regress the fork, in an ATP-dependent manner, displacing SSB on the ssDNA. Overall, our results highlight two functions of RecG that can be employed in the regulation of stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical CenterOmahaNE 68198-6025USA
| | - Yaqing Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical CenterOmahaNE 68198-6025USA
| | - Piero R. Bianco
- Center for Single Molecule Biophysics, Department of Microbiology and Immunology, University at BuffaloSUNYBuffaloNY 14214USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical CenterOmahaNE 68198-6025USA
| |
Collapse
|
38
|
Shinn MK, Kozlov AG, Nguyen B, Bujalowski WM, Lohman TM. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res 2019; 47:8581-8594. [PMID: 31329947 PMCID: PMC7145534 DOI: 10.1093/nar/gkz606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli single strand (ss) DNA binding (SSB) protein protects ssDNA intermediates and recruits at least 17 SSB interacting proteins (SIPs) during genome maintenance. The SSB C-termini contain a 9 residue acidic tip and a 56 residue intrinsically disordered linker (IDL). The acidic tip interacts with SIPs; however a recent proposal suggests that the IDL may also interact with SIPs. Here we examine the binding to four SIPs (RecO, PriC, PriA and χ subunit of DNA polymerase III) of three peptides containing the acidic tip and varying amounts of the IDL. Independent of IDL length, we find no differences in peptide binding to each individual SIP indicating that binding is due solely to the acidic tip. However, the tip shows specificity, with affinity decreasing in the order: RecO > PriA ∼ χ > PriC. Yet, RecO binding to the SSB tetramer and an SSB–ssDNA complex show significant thermodynamic differences compared to the peptides alone, suggesting that RecO interacts with another region of SSB, although not the IDL. SSB containing varying IDL deletions show different binding behavior, with the larger linker deletions inhibiting RecO binding, likely due to increased competition between the acidic tip interacting with DNA binding sites within SSB.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wlodek M Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy M Lohman
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Huang YH, Lin ES, Huang CY. Complexed crystal structure of SSB reveals a novel single-stranded DNA binding mode (SSB)3:1: Phe60 is not crucial for defining binding paths. Biochem Biophys Res Commun 2019; 520:353-358. [DOI: 10.1016/j.bbrc.2019.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
40
|
Zhao T, Liu Y, Wang Z, He R, Xiang Zhang J, Xu F, Lei M, Deci MB, Nguyen J, Bianco PR. Super-resolution imaging reveals changes in Escherichia coli SSB localization in response to DNA damage. Genes Cells 2019; 24:814-826. [PMID: 31638317 DOI: 10.1111/gtc.12729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
The E. coli single-stranded DNA-binding protein (SSB) is essential to viability. It plays key roles in DNA metabolism where it binds to nascent single strands of DNA and to target proteins known as the SSB interactome. There are >2,000 tetramers of SSB per cell with 100-150 associated with the genome at any one time, either at DNA replication forks or at sites of repair. The remaining 1,900 tetramers could constantly diffuse throughout the cytosol or be associated with the inner membrane as observed for other DNA metabolic enzymes. To visualize SSB localization and to ascertain potential spatiotemporal changes in response to DNA damage, SSB-GFP chimeras were visualized using a novel, super-resolution microscope optimized for the study of prokaryotic cells. In the absence of DNA damage, SSB localizes to a small number of foci and the excess protein is associated with the inner membrane where it binds to the major phospholipids. Within five minutes following DNA damage, the vast majority of SSB disengages from the membrane and is found almost exclusively in the cell interior. Here, it is observed in a large number of foci, in discreet structures or, in diffuse form spread over the genome, thereby enabling repair events.
Collapse
Affiliation(s)
- Tianyu Zhao
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zilin Wang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Xiang Zhang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming Lei
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Piero R Bianco
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Kaur P, Longley MJ, Pan H, Wang H, Copeland WC. Single-molecule DREEM imaging reveals DNA wrapping around human mitochondrial single-stranded DNA binding protein. Nucleic Acids Res 2019; 46:11287-11302. [PMID: 30256971 PMCID: PMC6265486 DOI: 10.1093/nar/gky875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Improper maintenance of the mitochondrial genome progressively disrupts cellular respiration and causes severe metabolic disorders commonly termed mitochondrial diseases. Mitochondrial single-stranded DNA binding protein (mtSSB) is an essential component of the mtDNA replication machinery. We utilized single-molecule methods to examine the modes by which human mtSSB binds DNA to help define protein interactions at the mtDNA replication fork. Direct visualization of individual mtSSB molecules by atomic force microscopy (AFM) revealed a random distribution of mtSSB tetramers bound to extended regions of single-stranded DNA (ssDNA), strongly suggesting non-cooperative binding by mtSSB. Selective binding to ssDNA was confirmed by AFM imaging of individual mtSSB tetramers bound to gapped plasmid DNA substrates bearing defined single-stranded regions. Shortening of the contour length of gapped DNA upon binding mtSSB was attributed to DNA wrapping around mtSSB. Tracing the DNA path in mtSSB–ssDNA complexes with Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy established a predominant binding mode with one DNA strand winding once around each mtSSB tetramer at physiological salt conditions. Single-molecule imaging suggests mtSSB may not saturate or fully protect single-stranded replication intermediates during mtDNA synthesis, leaving the mitochondrial genome vulnerable to chemical mutagenesis, deletions driven by primer relocation or other actions consistent with clinically observed deletion biases.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
42
|
Fleming E, Yuan AH, Heller DM, Hochschild A. A bacteria-based genetic assay detects prion formation. Proc Natl Acad Sci U S A 2019; 116:4605-4610. [PMID: 30782808 PMCID: PMC6410773 DOI: 10.1073/pnas.1817711116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.
Collapse
Affiliation(s)
- Eleanor Fleming
- Department of Microbiology, Blavatnik Institue, Harvard Medical School, Boston, MA 02115
| | - Andy H Yuan
- Department of Microbiology, Blavatnik Institue, Harvard Medical School, Boston, MA 02115
| | - Danielle M Heller
- Department of Microbiology, Blavatnik Institue, Harvard Medical School, Boston, MA 02115
| | - Ann Hochschild
- Department of Microbiology, Blavatnik Institue, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
43
|
Huang YH, Chen IC, Huang CY. Characterization of an SSB–dT25 complex: structural insights into the S-shaped ssDNA binding conformation. RSC Adv 2019; 9:40388-40396. [PMID: 35542687 PMCID: PMC9076272 DOI: 10.1039/c9ra09406g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) play an important role in all DNA-dependent cellular processes, such as DNA replication, recombination, repair, and replication restart. The N-terminal domain of SSBs forms an oligonucleotide/oligosaccharide-binding (OB) fold for ssDNA binding. The SSB–dC35 complex structure has revealed how an Escherichia coli SSB (EcSSB) tetramer binds to 65-nucleotide (nt)-long ssDNA, namely, the (SSB)65 binding mode. Knowledge on whether the ssDNA-binding mode for EcSSB is typical for all SSBs or is bacterial strain and length dependent is limited. Here, we studied the ssDNA-binding properties of a Pseudomonas aeruginosa SSB (PaSSB) and investigated its interaction mode through crystallographic analysis. The complex crystal structure containing a PaSSB tetramer with two ssDNA chains was solved at a resolution of 1.91 Å (PDB entry 6IRQ). Results revealed that each bound ssDNA dT25 adopts an S-shaped conformation. This binding mode, as shown by the complex structure of PaSSB, differs significantly from (SSB)65. ssDNA-binding contributions from aromatic residues in PaSSB, except the contribution of Trp54, were not significant. Using electrophoretic mobility shift analysis, we characterized the stoichiometry of PaSSB complexed with a series of ssDNA homopolymers. The minimal length of ssDNA required for PaSSB tetramer binding and the size of the ssDNA-binding site were 25 and 29 nt, respectively. These observations through structure–function analysis suggested that only two OB folds rather than four OB folds in PaSSB are enough for the formation of a stable complex with ssDNA. The PaSSB noninteracting OB folds proposed here may allow sliding via reptation in a dynamic ssDNA binding process. Single-stranded DNA (ssDNA)-binding proteins (SSBs) play an important role in all DNA-dependent cellular processes, such as DNA replication, recombination, repair, and replication restart.![]()
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - I-Chen Chen
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
- Department of Medical Research
| |
Collapse
|
44
|
Huang CY. Crystal structure of SSB complexed with inhibitor myricetin. Biochem Biophys Res Commun 2018; 504:704-708. [DOI: 10.1016/j.bbrc.2018.08.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
|
45
|
Cao Y, Yang M, Ma W, Sun Y, Chen G. Overexpression of SSB Xoc, a Single-Stranded DNA-Binding Protein From Xanthomonas oryzae pv. oryzicola, Enhances Plant Growth and Disease and Salt Stress Tolerance in Transgenic Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:953. [PMID: 30026748 PMCID: PMC6041465 DOI: 10.3389/fpls.2018.00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 05/05/2023]
Abstract
We previously reported that SSBXoc, a highly conserved single-stranded DNA-binding protein from Xanthomonas spp., was secreted through the type III secretion system (T3SS) and functioned as a harpin-like protein to elicit the hypersensitive response (HR) in the non-host plant, tobacco. In this study, we cloned SsbXoc gene from X. oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak in rice, and transferred it into Nicotiana benthamiana via Agrobacterium-mediated transformation. The expression of SsbXoc in transgenic N. benthamiana enhanced growth of both seedling and adult plants. When inoculated with the harpin Hpa1 or the pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), the accumulation of reactive oxygen species (ROS) was increased more in SsbXoc transgenic lines than that in wild-type (WT) plants. The expression of pathogenesis-related protein genes (PR1a and SGT1), HR marker genes (HIN1 and HSR203J) and the mitogen-activated protein kinase pathway gene, MPK3, was significantly higher in transgenic lines than in WT after inoculation with Pst DC3000. In addition, SsbXoc transgenic lines showed the enhanced resistance to the pathogenic bacteria P. s. tabaci and the improved tolerance to salt stress, accompanied by the elevated transcription levels of the defense- and stress-related genes. Taken together, these results indicate that overexpression of the SsbXoc gene in N. benthamiana significantly enhanced plant growth and increased tolerance to disease and salt stress via modulating the expression of the related genes, thus providing an alternative approach for development of plants with improved tolerance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yanyan Cao
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mingtao Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenxiu Ma
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yujing Sun
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Antony E, Lohman TM. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin Cell Dev Biol 2018; 86:102-111. [PMID: 29588158 DOI: 10.1016/j.semcdb.2018.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Single stranded DNA binding proteins (SSB) are essential to the cell as they stabilize transiently open single stranded DNA (ssDNA) intermediates, recruit appropriate DNA metabolism proteins, and coordinate fundamental processes such as replication, repair and recombination. Escherichia coli single stranded DNA binding protein (EcSSB) has long served as the prototype for the study of SSB function. The structure, functions, and DNA binding properties of EcSSB are well established: The protein is a stable homotetramer with each subunit possessing an N-terminal DNA binding core, a C-terminal protein-protein interaction tail, and an intervening intrinsically disordered linker (IDL). EcSSB wraps ssDNA in multiple DNA binding modes and can diffuse along DNA to remove secondary structures and remodel other protein-DNA complexes. This review provides an update on these features based on recent findings, with special emphasis on the functional and mechanistic relevance of the IDL and DNA binding modes.
Collapse
Affiliation(s)
- Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Hernandez AJ, Richardson CC. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin Cell Dev Biol 2018; 86:92-101. [PMID: 29588157 DOI: 10.1016/j.semcdb.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
The essential bacteriophage T7-encoded single-stranded DNA binding protein is the nexus of T7 DNA metabolism. Multiple layers of macromolecular interactions mediate its function in replication, recombination, repair, and the maturation of viral genomes. In addition to binding ssDNA, the protein binds to DNA polymerase and DNA helicase, regulating their activities. The protein displays potent homologous DNA annealing activity, underscoring its role in recombination.
Collapse
Affiliation(s)
- Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
49
|
Huang YH, Huang CY. SAAV2152 is a single-stranded DNA binding protein: the third SSB in Staphylococcus aureus. Oncotarget 2018; 9:20239-20254. [PMID: 29755648 PMCID: PMC5945547 DOI: 10.18632/oncotarget.24427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, repair, and recombination. Unlike E. coli, which contains only one type of SSB (EcSSB), some bacteria have two paralogous SSBs, namely, SsbA and SsbB. In this study, we found the third SSB-like protein in Staphylococcus aureus, SAAV2152, which was designated as SaSsbC. SaSsbC is a protein of 131 amino acids and shares 38%, 36%, and 33% sequence identity to SaSsbB, SaSsbA, and EcSSB, respectively. Gene map analysis showed that unlike the E. coli ssb gene, which is adjacent to uvrA gene, the S. aureus ssb gene SAAV2152 is flanked by the putative SceD, the putative YwpF, and fabZ genes. A homology model showed that SaSsbC consists of the classic oligonucleotide/oligosaccharide-binding fold at the N-terminus. At the C-terminus, SaSsbC did not exhibit sequence similarity to that of EcSSB. Electrophoretic mobility shift analysis showed that SaSsbC formed a single complex with ssDNA of different lengths. Mutational analysis revealed that Tyr36, Tyr47, Phe53, and Tyr81 in SaSsbC are at positions that structurally correspond to the important residues of EcSSB for binding to ssDNA and are also critical for SaSsbC to bind ssDNA. Unlike EcSSB, which can stimulate EcPriA, SaSsbC did not affect the activity of SaPriA. In addition, SaSsbA inhibitor 9-methyl-2,3,7-trihydroxy-6-fluorone (NSC5426) could inhibit the ssDNA-binding activity of SaSsbC with IC50 of 78 μM. In conclusion, this study has identified and characterized SAAV2152 as a kind of SSB, and further research can directly focus on determining its actual physiological role in S. aureus.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
50
|
Chen KL, Cheng JH, Lin CY, Huang YH, Huang CY. Characterization of single-stranded DNA-binding protein SsbB fromStaphylococcus aureus: SsbB cannot stimulate PriA helicase. RSC Adv 2018; 8:28367-28375. [PMID: 35542479 PMCID: PMC9084298 DOI: 10.1039/c8ra04392b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/28/2018] [Indexed: 11/21/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential to cells as they participate in DNA metabolic processes, such as DNA replication, repair, and recombination. The functions of SSBs have been studied extensively in Escherichia coli. Unlike E. coli, which contains only one type of SSB (EcSSB), some bacteria have more than one paralogous SSB. In Staphylococcus aureus, three SSBs are found, namely, SsbA, SaSsbB, and SsbC. While EcSSB can significantly stimulate EcPriA helicase, SaSsbA does not affect the SaPriA activity. It remains unclear whether SsbBs can participate in the PriA-directed DNA replication restart process. In this study, we characterized the properties of SaSsbBs through structural and functional analyses. Crystal structure of SaSsbB determined at 2.9 Å resolution (PDB entry 5YYU) revealed four OB folds in the N-terminal DNA-binding domain. DNA binding analysis using EMSA showed that SaSsbB binds to ssDNA with greater affinity than SaSsbA does. Gene map analysis demonstrated that SAAV0835 encoding SaSsbB is flanked by unknown genes encoding hypothetical proteins, namely, putative Sipho_Gp157, ERF, and HNHc_6 gene products. Structure-based mutational analysis indicated that the four aromatic residues (Phe37, Phe48, Phe54, and Tyr82) in SaSsbB are at positions that structurally correspond to the important residues of EcSSB for binding to ssDNA and are also critical for SaSsbB to bind ssDNA. Similar to EcSSB and other SSBs such as SaSsbA and SaSsbC, SaSsbB also exhibited high thermostability. However, unlike EcSSB, which can stimulate EcPriA, SaSsbB did not affect the activity of SaPriA. Based on results in this study and previous works, we therefore established that SsbA and SsbB, as well as SsbC, do not stimulate PriA activity. Single-stranded DNA-binding proteins (SSBs) are essential to cells as they participate in DNA metabolic processes, such as DNA replication, repair, and recombination.![]()
Collapse
Affiliation(s)
- Kuan-Lin Chen
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - Jen-Hao Cheng
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - Chih-Yang Lin
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
- School of Medicine
| | - Yen-Hua Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
- Department of Medical Research
| |
Collapse
|