1
|
Kleinbongard P, Lieder H, Skyschally A, Heusch G. No sex-related differences in infarct size, no-reflow and protection by ischaemic preconditioning in Göttingen minipigs. Cardiovasc Res 2022; 119:561-570. [PMID: 35426434 DOI: 10.1093/cvr/cvac062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Aims
Female sex has been proposed to be cardioprotective per se. Studies with myocardial ischaemia/reperfusion and infarct size as endpoint have demonstrated cardioprotection in female, castrated male and male pigs. These studies are difficult to compare, given the different pig strains, models, durations of ischaemia and methods of infarct size quantification. The few studies using both female and male pigs reported no differences in infarct size and cardioprotection. We therefore prospectively compared infarct size in Göttingen minipigs undergoing ischaemia/reperfusion (I/R) without and with ischaemic preconditioning (IPC) between female, castrated male and male pigs.
Methods and Results
In a prospective, randomised approach, 28 Göttingen open-chest, anaesthetised minipigs underwent 60 min ischaemia by distal left anterior descending artery (LAD) occlusion and 180 min reperfusion without and with IPC by 3 cycles of 5 min LAD occlusion/10 min reperfusion. Infarct size with I/R was not different between female, castrated male and male pigs (45±8 vs. 45±13 vs. 41±9% area at risk), as was the reduction in infarct size with IPC (25±11 vs. 30±8 vs. 19±10% area at risk). Also, the area of no-reflow was not different between female, castrated male and male pigs with I/R (57±13 vs. 35±7 vs. 47±26% infarct size) or IPC (4±10 vs.12±20 vs. 0±0% infarct size). Phosphorylation of signal transducer and activator of transcription 3 was increased at 10 min reperfusion by IPC but not by I/R to the same extent in female, castrated male and male pigs (198±30 vs. 230±165 vs. 179±107% of baseline).
Conclusion
Our data do not support the notion of sex- or castration-related differences in infarct size, coronary microvascular injury and cardioprotection by ischaemic preconditioning.
Translational perspective
The translation of successful preclinical studies on cardioprotection to the benefit of patients with reperfused myocardial infarction has been difficult. The difficulties have been attributed to confounders such as co-morbidities and co-medications which patients typically have but animals don´t, but also to age and sex. Notably, female sex has been considered as protective per se. We have now, using our established and clinically relevant pig model of reperfused acute myocardial infarction and ischaemic preconditioning as the most robust cardioprotective intervention looked for sex-related differences of infarct size, no-reflow and cardioprotection by ischaemic preconditioning in a prospectively powered approach but found none such difference.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Helmut Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia Enhances the Acute Stretch-Induced Increase in Calcium Spark Rate in Ventricular Myocytes. Front Physiol 2020; 11:289. [PMID: 32372969 PMCID: PMC7179564 DOI: 10.3389/fphys.2020.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch. Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 μM Fluo-4, 10 min) or ROS (1 μM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy. Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s−1·100 μm−2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s−1·100 μm−2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s−1·100 μm−2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s−1·100 μm−2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s−1·100 μm−2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001). Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.
Collapse
Affiliation(s)
- Breanne A Cameron
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hiroaki Kai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiko Kaihara
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gentaro Iribe
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Lubberding AF, Sattler SM, Flethøj M, Tfelt-Hansen J, Jespersen T. Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 318:H391-H400. [PMID: 31922881 DOI: 10.1152/ajpheart.00406.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular fibrillation (VF) during acute myocardial infarction (AMI) is an important contributor to sudden cardiac death. Large animal models are widely used to study AMI-induced arrhythmia, but the mode of AMI induction ranges from thoracotomy and surgical ligation of a coronary vessel (open chest) to minimally invasive techniques, including balloon occlusion (closed chest). How the choice of induction affects arrhythmia development is unclear. The aim of this study was to compare an open-chest and a closed-chest model with regard to hemodynamics, electrophysiology, and arrhythmia development. Forty-two female Danish Landrace pigs (20 open chest, 22 closed chest) were anesthetized, and occlusion of the mid-left anterior descending coronary artery was performed for 60 min. Opening the chest reduced blood pressure and cardiac output (Δ -22 mmHg, Δ -1.5 L/min from baseline, both P < 0.001 intragroup). Heart rate decreased with opening of the chest but increased with balloon placement (P < 0.001). AMI-induced ST elevation was lower in the open-chest group (P < 0.001). Premature ventricular contractions occurred in two distinct phases (0-15 and 15-40 min), the latter of which was delayed in the open-chest group (P = 0.005). VF occurred in 7 out of 20 and 12 out of 22 pigs in the open-chest and closed-chest groups, respectively (P = 0.337), with longer time-to-VF in the open-chest group (23.4 ± 1.2 min in open chest and 17.8 ± 1.4 min in closed chest; P = 0.007). In summary, opening the chest altered hemodynamic parameters and delayed the onset of ventricular arrhythmias. Hence, in the search for mechanisms and novel treatments of AMI-induced arrhythmia, caution should be taken when choosing between or comparing the results from these two models.NEW & NOTEWORTHY We demonstrated pronounced differences in hemodynamic parameters and time course of ventricular arrhythmias in regard to mode of infarct induction. Inducing myocardial infarction by thoracotomy and subsequent ligation decreased blood pressure and cardiac output and delayed the onset of ventricular arrhythmia, whereas balloon occlusion resulted in higher heart rates during infarct.
Collapse
Affiliation(s)
- Anniek F Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan M Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Flethøj
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rog-Zielinska EA, Peyronnet R. Cardiac mechanics and electrics: It takes two to tango. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:121-123. [PMID: 28962935 DOI: 10.1016/j.pbiomolbio.2017.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany; Imperial College London, National Heart and Lung Institute, Heart Science Centre, UK
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany.
| |
Collapse
|