1
|
Ren H, Cheng Y, Wen G, Wang J, Zhou M. Emerging optogenetics technologies in biomedical applications. SMART MEDICINE 2023; 2:e20230026. [PMID: 39188295 PMCID: PMC11235740 DOI: 10.1002/smmd.20230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 08/28/2024]
Abstract
Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yi Cheng
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Gaolin Wen
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhou
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
2
|
Simon-Chica A, Wülfers EM, Kohl P. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol 2023; 325:H475-H491. [PMID: 37417876 PMCID: PMC10538996 DOI: 10.1152/ajpheart.00184.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eike M Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Wang TW, Sung YL, Chu HW, Lin SF. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications. Biosens Bioelectron 2021; 179:113060. [PMID: 33571936 DOI: 10.1016/j.bios.2021.113060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Electrophysiological sensing of cardiomyocytes (CMs) in optogenetic preparations applies various techniques, such as patch-clamp, microelectrode array, and optical mapping. However, challenges remain in decreasing the cost, system dimensions, and operating skills required for these technologies. OBJECTIVE This study developed a low-cost, portable impedance plethysmography (IPG)-based electrophysiological measurement of cultured CMs for optogenetic applications. METHODS To validate the efficacy of the proposed sensor, optogenetic stimulation with different pacing cycle lengths (PCL) was performed to evaluate whether the channelrhodopsin-2 (ChR2)-expressing CM beating rhythm measured by the IPG sensor was consistent with biological responses. RESULTS The experimental results show that the CM field potential was synchronized with external optical pacing with PCLs ranging from 250 ms to 1000 ms. Moreover, irregular fibrillating waveforms induced by CM arrhythmia were detected after overdrive optical pacing. Through the combined evidence of the theoretical model and experimental results, this study confirmed the feasibility of long-term electrophysiological sensing for optogenetic CMs. CONCLUSION This study proposes an IPG-based sensor that is low-cost, portable, and requires low-operating skills to perform real-time CM field potential measurement in response to optogenetic stimulation. SIGNIFICANCE This study demonstrates a new methodology for convenient electrophysiological sensing of CMs in optogenetic applications.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Hsiao-Wei Chu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Li J, Li H, Rao P, Luo J, Wang X, Wang L. Shining light on cardiac electrophysiology: From detection to intervention, from basic research to translational applications. Life Sci 2021; 274:119357. [PMID: 33737082 DOI: 10.1016/j.lfs.2021.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cardiac arrhythmias are an important group of cardiovascular diseases, which can occur alone or in association with other cardiovascular diseases. The development of cardiac arrhythmias cannot be separated from changes in cardiac electrophysiology, and the investigation and clarification of cardiac electrophysiological changes are beneficial for the treatment of cardiac arrhythmias. However, electrical energy-based pacemakers and defibrillators, which are widely used to treat arrhythmias, still have certain disadvantages. Thereby, optics promises to be used for optical manipulation and its use in biomedicine is increasing. Since visible light is readily absorbed and scattered in living tissues and tissue penetration is shallow, optical modulation for cells and tissues requires conversion media that convert light energy into bioelectrical activity. In this regard, fluorescent dyes, light-sensitive ion channels, and optical nanomaterials can assume this role, the corresponding optical mapping technology, optogenetics technology, and optical systems based on luminescent nanomaterials have been introduced into the research in cardiovascular field and are expected to be new tools for the study and treatment of cardiac arrhythmias. In addition, infrared and near-infrared light has strong tissue penetration, which is one of the excellent options of external trigger for achieving optical modulation, and is also widely used in the study of optical modulation of biological activities. Here, the advantages of optical applications are summarized, the research progresses and emerging applications of optical-based technologies as detection and intervention tools for cardiac electrophysiological are highlighted. Moreover, the prospects for future applications of optics in clinical diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
5
|
Fernández MC, Kopton RA, Simon-Chica A, Madl J, Hilgendorf I, Zgierski-Johnston CM, Schneider-Warme F. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology. Methods Mol Biol 2021; 2191:287-307. [PMID: 32865751 DOI: 10.1007/978-1-0716-0830-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetic approaches have evolved as potent means to investigate cardiac electrophysiology, with research ranging from the study of arrhythmia mechanisms to effects of cardiac innervation and heterocellular structural and functional interactions, both in healthy and diseased myocardium. Most commonly, these studies use channelrhodopsin-2 (ChR2)-expressing murine models that enable light-activated depolarization of the target cell population. However, each newly generated mouse line requires thorough characterization, as cell-type specific ChR2 expression cannot be taken for granted, and the electrophysiological response of its activation in the target cell should be evaluated. In this chapter, we describe detailed protocols for assessing ChR2 specificity using immunohistochemistry, isolation of specific cell populations to analyze electrophysiological effects of ChR2 activation with the patch-clamp technique, and whole-heart experiments to assess in situ effects of optical stimulation.
Collapse
Affiliation(s)
- Marbely C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ramona A Kopton
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ana Simon-Chica
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
7
|
Nelson AR, Sagare MA, Wang Y, Kisler K, Zhao Z, Zlokovic BV. Channelrhodopsin Excitation Contracts Brain Pericytes and Reduces Blood Flow in the Aging Mouse Brain in vivo. Front Aging Neurosci 2020; 12:108. [PMID: 32410982 PMCID: PMC7201096 DOI: 10.3389/fnagi.2020.00108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Brains depend on blood flow for the delivery of oxygen and nutrients essential for proper neuronal and synaptic functioning. French physiologist Rouget was the first to describe pericytes in 1873 as regularly arranged longitudinal amoeboid cells on capillaries that have a muscular coat, implying that these are contractile cells that regulate blood flow. Although there have been >30 publications from different groups, including our group, demonstrating that pericytes are contractile cells that can regulate hemodynamic responses in the brain, the role of pericytes in controlling cerebral blood flow (CBF) has not been confirmed by all studies. Moreover, recent studies using different optogenetic models to express light-sensitive channelrhodopsin-2 (ChR2) cation channels in pericytes were not conclusive; one, suggesting that pericytes expressing ChR2 do not contract after light stimulus, and the other, demonstrating contraction of pericytes expressing ChR2 after light stimulus. Since two-photon optogenetics provides a powerful tool to study mechanisms of blood flow regulation at the level of brain capillaries, we re-examined the contractility of brain pericytes in vivo using a new optogenetic model developed by crossing our new inducible pericyte-specific CreER mouse line with ChR2 mice. We induced expression of ChR2 in pericytes with tamoxifen, excited ChR2 by 488 nm light, and monitored pericyte contractility, brain capillary diameter changes, and red blood cell (RBC) velocity in aged mice by in vivo two-photon microscopy. Excitation of ChR2 resulted in pericyte contraction followed by constriction of the underlying capillary leading to approximately an 8% decrease (p = 0.006) in capillary diameter. ChR2 excitation in pericytes substantially reduced capillary RBC flow by 42% (p = 0.03) during the stimulation period compared to the velocity before stimulation. Our data suggests that pericytes contract in vivo and regulate capillary blood flow in the aging mouse brain. By extension, this might have implications for neurological disorders of the aging human brain associated with neurovascular dysfunction and pericyte loss such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Mao D, Li N, Xiong Z, Sun Y, Xu G. Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience 2019; 21:403-412. [PMID: 31704651 PMCID: PMC6889635 DOI: 10.1016/j.isci.2019.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
Collapse
Affiliation(s)
- Dacheng Mao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Zheshun Xiong
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Guangyu Xu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Zgierski-Johnston CM, Ayub S, Fernández MC, Rog-Zielinska EA, Barz F, Paul O, Kohl P, Ruther P. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:51-61. [PMID: 31738979 PMCID: PMC7322525 DOI: 10.1016/j.pbiomolbio.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 02/03/2023]
Abstract
Optogenetics enables cell-type specific monitoring and actuation via light-activated proteins. In cardiac research, expressing light-activated depolarising ion channels in cardiomyocytes allows optical pacing and defibrillation. Previous studies largely relied on epicardial illumination. Light penetration through the myocardium is however problematic when moving to larger animals and humans. To overcome this limitation, we assessed the utility of an implantable multi light-emitting diode (LED) optical probe (IMLOP) for intramural pacing of mouse hearts expressing cardiac-specific channelrhodopsin-2 (ChR2). Here we demonstrated that IMLOP insertion needs approximately 20 mN of force, limiting possible damage from excessive loads applied during implantation. Histological sections confirmed the confined nature of tissue damage during acute use. The temperature change of the surrounding tissue was below 1 K during LED operation, rendering the probe safe for use in situ. This was confirmed in control experiments where no effect on cardiac action potential conduction was observed even when using stimulation parameters twenty-fold greater than required for pacing. In situ experiments on ChR2-expressing mouse hearts demonstrated that optical stimulation is possible with light intensities as low as 700 μW/mm2; although stable pacing requires higher intensities. When pacing with a single LED, rheobase and chronaxie values were 13.3 mW/mm2 ± 0.9 mW/mm2 and 3 ms ± 0.6 ms, respectively. When doubling the stimulated volume the rheobase decreased significantly (6.5 mW/mm2 ± 0.9 mW/mm2). We have demonstrated IMLOP-based intramural optical pacing of the heart. Probes cause locally constrained tissue damage in the acute setting and require low light intensities for pacing. Further development is necessary to assess effects of chronic implantation.
Collapse
Affiliation(s)
- C M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - S Ayub
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - M C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Barz
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - O Paul
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Ruther
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Verheyen J, Kohl P, Peyronnet R. The Institute for Experimental Cardiovascular Medicine in Freiburg. Biophys Rev 2019; 11:675-677. [PMID: 31529359 DOI: 10.1007/s12551-019-00593-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Julia Verheyen
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Ferenczi EA, Tan X, Huang CLH. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front Physiol 2019; 10:1096. [PMID: 31572204 PMCID: PMC6749684 DOI: 10.3389/fphys.2019.01096] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling "spark cells" to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Collapse
Affiliation(s)
- Emily A. Ferenczi
- Department of Neurology, Massachusetts General Hospital and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Ayub S, Ruther P, Paul O, Kohl P, Zgierski-Johnston CM. Invasive Optical Pacing in Perfused, Optogenetically Modified Mouse Heart Using Stiff Multi-LED Optical Probes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1-4. [PMID: 30440302 DOI: 10.1109/embc.2018.8513166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present the first invasive use of a stiff, multiLED optical probe for intramural optical stimulation of cardiac tissue. We demonstrate that optical pacing is possible with high spatial and temporal resolution in transgenic mice expressing channelrhodopsin-2. The technical implementation of this study builds on optical probes recently developed and tested ex vivo in cerebral tissue of mice. The probes comprise LEDs integrated on flexible substrates stiffened by silicon-based MEMS structures enabling the successful penetration into the cardiac tissue. The probe technology is extended to allow dual-sided illumination for directional tissue stimulation. Implantation trials affirm the ability to optically pace the isolated perfused heart at stimulation frequencies between 4Hz and 12Hz with experimentally determined emittance levels of 10mW mm-2 Rapid activation of two distant LEDs could reliably be used to induce short runs of ventricular fibrillation, while simultaneous activation of all LEDs allowed termination of re-entrant rhythm disturbances (optical defibrillation). Thus, spatially-resolved intramural pacing and rhythm control of the isolated heart is possible using stiff, multi-LED optical probes.
Collapse
|
13
|
A Software Architecture to Mimic a Ventricular Tachycardia in Intact Murine Hearts by Means of an All-Optical Platform. Methods Protoc 2019; 2:mps2010007. [PMID: 31164591 PMCID: PMC6481051 DOI: 10.3390/mps2010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
Optogenetics is an emerging method that uses light to manipulate electrical activity in excitable cells exploiting the interaction between light and light-sensitive depolarizing ion channels, such as channelrhodopsin-2 (ChR2). Initially used in the neuroscience, it has been adopted in cardiac research where the expression of ChR2 in cardiac preparations allows optical pacing, resynchronization and defibrillation. Recently, optogenetics has been leveraged to manipulate cardiac electrical activity in the intact heart in real-time. This new approach was applied to simulate a re-entrant circuit across the ventricle. In this technical note, we describe the development and the implementation of a new software package for real-time optogenetic intervention. The package consists of a single LabVIEW program that simultaneously captures images at very high frame rates and delivers precisely timed optogenetic stimuli based on the content of the images. The software implementation guarantees closed-loop optical manipulation at high temporal resolution by processing the raw data in workstation memory. We demonstrate that this strategy allows the simulation of a ventricular tachycardia with high stability and with a negligible loss of data with a temporal resolution of up to 1 ms.
Collapse
|
14
|
Kopton RA, Baillie JS, Rafferty SA, Moss R, Zgierski-Johnston CM, Prykhozhij SV, Stoyek MR, Smith FM, Kohl P, Quinn TA, Schneider-Warme F. Cardiac Electrophysiological Effects of Light-Activated Chloride Channels. Front Physiol 2018; 9:1806. [PMID: 30618818 PMCID: PMC6304430 DOI: 10.3389/fphys.2018.01806] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl--driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization.
Collapse
Affiliation(s)
- Ramona A Kopton
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany.,Faculty of Biology University of Freiburg, Freiburg, Germany
| | - Jonathan S Baillie
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | | | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University Halifax, NS, Canada
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Noble D, Blundell TL, Kohl P. Progress in biophysics and molecular biology: A brief history of the journal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:1-4. [PMID: 30526959 DOI: 10.1016/j.pbiomolbio.2018.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Elsasser Str 2Q, 90110, Freiburg, Germany.
| |
Collapse
|
16
|
Schneider-Warme F. The power of optogenetics : Potential in cardiac experimental and clinical electrophysiology. Herzschrittmacherther Elektrophysiol 2018; 29:24-29. [PMID: 29305704 DOI: 10.1007/s00399-017-0545-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 01/02/2023]
Abstract
Optogenetics is an emerging, interdisciplinary research area which combines genetic and optical technologies to steer and monitor specific biological processes. To this end, light-activated proteins, so-called optogenetic actuators, or fluorescent sensor proteins are genetically targeted to the cells of interest. Light activation can then be used to modulate or record cellular behaviour with high spatiotemporal precision. In cardiac research, optogenetic approaches have been used to unravel heterocellular electrotonic interactions, both in vitro and in situ. Pioneering optogenetic studies with potential relevance for clinical electrophysiology include light-controlled pacing experiments and optical defibrillation studies. However, despite successful implementation in mouse models, clinical applications are not feasible to date; these will require major advances in gene therapy and in optical techniques.
Collapse
Affiliation(s)
- Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany.
| |
Collapse
|
17
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Rog-Zielinska EA, Peyronnet R. Cardiac mechanics and electrics: It takes two to tango. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:121-123. [PMID: 28962935 DOI: 10.1016/j.pbiomolbio.2017.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany; Imperial College London, National Heart and Lung Institute, Heart Science Centre, UK
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany.
| |
Collapse
|