1
|
Valet M, Iglesias-Artola JM, Elsner F, Fritsch AW, Campàs O. A Heating and Cooling Stage With Fast Temporal Control for Biological Applications. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:573-575. [PMID: 39157062 PMCID: PMC11329223 DOI: 10.1109/ojemb.2024.3426912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
The study of biological processes involving live microscopy techniques requires adequate temperature control to respect the physiology of the organism under study. We present here a design strategy for a microscope temperature stage based on thermoelectric elements. The design allows the user to access a range of temperatures below and above room temperature and can accommodate samples of different geometries. In addition, by cooling simultaneously the sample insert and the objective, we minimize the temperature gradients along the sample for large magnification objectives requiring immersion oil. We illustrate how this design can be used to study the physiology of the zebrafish embryo over the temperature tolerance of this species. We envision that this device could benefit the communities using model and non-model organisms with physiological temperatures different from typical mammalian cell culture incubation in biomedical research.
Collapse
Affiliation(s)
- Manon Valet
- Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | | | - Falk Elsner
- Max Planck Institute of Molecular Cell Biology and Genetics01307DresdenGermany
| | - Anatol W. Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics01307DresdenGermany
| | - Otger Campàs
- Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
- Max Planck Institute of Molecular Cell Biology and Genetics01307DresdenGermany
- Center for Systems Biology Dresden01307DresdenGermany
| |
Collapse
|
2
|
Genge CE, Muralidharan P, Kemp J, Hull CM, Yip M, Simpson K, Hunter DV, Claydon TW. Zebrafish cardiac repolarization does not functionally depend on the expression of the hERG1b-like transcript. Pflugers Arch 2024; 476:87-99. [PMID: 37934265 DOI: 10.1007/s00424-023-02875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.
Collapse
Affiliation(s)
- Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Padmapriya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Jake Kemp
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Mandy Yip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Kyle Simpson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada.
| |
Collapse
|
3
|
Baillie JS, Gendernalik A, Garrity DM, Bark D, Quinn TA. The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish. Front Physiol 2023; 14:1086050. [PMID: 37007999 PMCID: PMC10060984 DOI: 10.3389/fphys.2023.1086050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as “mechano-electric coupling” and “mechano-mechanical coupling.” Whether this occurs during cardiac development is ill-defined, as acutely altering the heart’s mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.
Collapse
Affiliation(s)
| | - Alex Gendernalik
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - David Bark
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - T. Alexander Quinn
- Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
- Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
4
|
Shen C, He J, Zhu K, Zheng N, Yu Y, He C, Yang C, Zuo Z. Mepanipyrim induces cardiotoxicity of zebrafish (Danio rerio) larvae via promoting AhR-regulated COX expression pathway. J Environ Sci (China) 2023; 125:650-661. [PMID: 36375947 DOI: 10.1016/j.jes.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/16/2023]
Abstract
The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yue Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Zhang J, Zuo Z, Li J, Wang Y, Huang J, Xu L, Jin K, Lu H, Dai Y. In situ assessment of statins’ effect on autophagic activity in zebrafish larvae cardiomyocytes. Front Cardiovasc Med 2022; 9:921829. [DOI: 10.3389/fcvm.2022.921829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the survival rate of cardiomyocytes is the key point to treat most of the heart diseases, and targeting autophagy is a potential advanced therapeutic approach. Monitoring autophagic activity in cardiomyocytes in situ will be useful for studying autophagy-related heart disease and screening autophagy-modulating drugs. Zebrafish, Danio rerio, has been proven as an animal model for studying heart diseases in situ. Taken the advantage of zebrafish, especially the imaging of intact animals, here we generated two stable transgenic zebrafish lines that specifically expressed EGFP-map1lc3b or mRFP-EGFP-map1lc3b in cardiomyocytes under the promoter of myosin light chain 7. We first used a few known autophagy-modulating drugs to confirm their usefulness. By quantifying the density of autophagosomes and autolysosomes, autophagy inducers and inhibitors showed their regulatory functions, which were consistent with previous studies. With the two lines, we then found a significant increase in the density of autophagosomes but not autolysosomes in zebrafish cardiomyocytes at the early developmental stages, indicating the involvement of autophagy in early heart development. To prove their applicability, we also tested five clinical statins by the two lines. And we found that statins did not change the density of autophagosomes but reduced the density of autolysosomes in cardiomyocytes, implying their regulation in autophagic flux. Our study provides novel animal models for monitoring autophagic activity in cardiomyocytes in situ, which could be used to study autophagy-related cardiomyopathy and drug screening.
Collapse
|
6
|
Liu J, Kasuya G, Zempo B, Nakajo K. Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Front Physiol 2022; 13:901571. [PMID: 35846012 PMCID: PMC9281569 DOI: 10.3389/fphys.2022.901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
Collapse
|
7
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
8
|
Stoyek MR, MacDonald EA, Mantifel M, Baillie JS, Selig BM, Croll RP, Smith FM, Quinn TA. Drivers of Sinoatrial Node Automaticity in Zebrafish: Comparison With Mechanisms of Mammalian Pacemaker Function. Front Physiol 2022; 13:818122. [PMID: 35295582 PMCID: PMC8919049 DOI: 10.3389/fphys.2022.818122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac excitation originates in the sinoatrial node (SAN), due to the automaticity of this distinct region of the heart. SAN automaticity is the result of a gradual depolarisation of the membrane potential in diastole, driven by a coupled system of transarcolemmal ion currents and intracellular Ca2+ cycling. The frequency of SAN excitation determines heart rate and is under the control of extra- and intracardiac (extrinsic and intrinsic) factors, including neural inputs and responses to tissue stretch. While the structure, function, and control of the SAN have been extensively studied in mammals, and some critical aspects have been shown to be similar in zebrafish, the specific drivers of zebrafish SAN automaticity and the response of its excitation to vagal nerve stimulation and mechanical preload remain incompletely understood. As the zebrafish represents an important alternative experimental model for the study of cardiac (patho-) physiology, we sought to determine its drivers of SAN automaticity and the response to nerve stimulation and baseline stretch. Using a pharmacological approach mirroring classic mammalian experiments, along with electrical stimulation of intact cardiac vagal nerves and the application of mechanical preload to the SAN, we demonstrate that the principal components of the coupled membrane- Ca2+ pacemaker system that drives automaticity in mammals are also active in the zebrafish, and that the effects of extra- and intracardiac control of heart rate seen in mammals are also present. Overall, these results, combined with previously published work, support the utility of the zebrafish as a novel experimental model for studies of SAN (patho-) physiological function.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melissa Mantifel
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Bailey M. Selig
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Frank M. Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
9
|
Herndon C, Astley HC, Owerkowicz T, Fenton FH. Defibrillate You Later, Alligator: Q10 Scaling and Refractoriness Keeps Alligators from Fibrillation. Integr Org Biol 2021; 3:obaa047. [PMID: 33977229 PMCID: PMC8101277 DOI: 10.1093/iob/obaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Effective cardiac contraction during each heartbeat relies on the coordination of an electrical wave of excitation propagating across the heart. Dynamically induced heterogeneous wave propagation may fracture and initiate reentry-based cardiac arrhythmias, during which fast-rotating electrical waves lead to repeated self-excitation that compromises cardiac function and potentially results in sudden cardiac death. Species which function effectively over a large range of heart temperatures must balance the many interacting, temperature-sensitive biochemical processes to maintain normal wave propagation at all temperatures. To investigate how these species avoid dangerous states across temperatures, we optically mapped the electrical activity across the surfaces of alligator (Alligator mississippiensis) hearts at 23°C and 38°C over a range of physiological heart rates and compare them with that of rabbits (Oryctolagus cuniculus). We find that unlike rabbits, alligators show minimal changes in wave parameters (action potential duration and conduction velocity) which complement each other to retain similar electrophysiological wavelengths across temperatures and pacing frequencies. The cardiac electrophysiology of rabbits accommodates the high heart rates necessary to sustain an active and endothermic metabolism at the cost of increased risk of cardiac arrhythmia and critical vulnerability to temperature changes, whereas that of alligators allows for effective function over a range of heart temperatures without risk of cardiac electrical arrhythmias such as fibrillation, but is restricted to low heart rates. Synopsis La contracción cardíaca efectiva durante cada latido del corazón depende de la coordinación de una onda eléctrica de excitación que se propaga a través del corazón. Heterogéidades inducidas dinámicamente por ondas de propagación pueden resultar en fracturas de las ondas e iniciar arritmias cardíacas basadas en ondas de reingreso, durante las cuales ondas espirales eléctricas de rotación rápida producen una autoexcitación repetida que afecta la función cardíaca y pude resultar en muerte súbita cardíaca. Las especies que funcionan eficazmente en una amplia gama de temperaturas cardíacas deben equilibrar los varios procesos bioquímicos que interactúan, sensibles a la temperatura para mantener la propagación normal de ondas a todas las temperaturas. Para investigar cómo estas especies evitan los estados peligrosos a través de las temperaturas, mapeamos ópticamente la actividad eléctrica a través de las superficies de los corazones de caimanes (Alligator mississippiensis) a 23°C and 38°C sobre un rango de frecuencias fisiológicas del corazón y comparamos con el de los conejos (Oryctolagus cuniculus). Encontramos que a diferencia de los conejos, los caimanes muestran cambios mínimos en los parámetros de onda (duración potencial de acción y velocidad de conducción) que se complementan entre sí para retener longitudes de onda electrofisiológicas similares a través de los rangos de temperaturas y frecuencias de ritmo. La electrofisiología cardíaca de los conejos acomoda las altas frecuencias cardíacas necesarias para mantener un metabolismo activo y endotérmico a costa de un mayor riesgo de arritmia cardíaca y vulnerabilidad crítica a los cambios de temperatura, mientras que la de los caimanes permite un funcionamiento eficaz en una serie de temperaturas cardíacas sin riesgo de arritmias eléctricas cardíacas como la fibrilación, pero está restringida a bajas frecuencias cardíacas.
Collapse
Affiliation(s)
- Conner Herndon
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Henry C Astley
- Department of Biology, Biomimicry Research & Innovation Center, University of Akron, Akron, OH, USA
| | - Tomasz Owerkowicz
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Simpson KE, Venkateshappa R, Pang ZK, Faizi S, Tibbits GF, Claydon TW. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Front Physiol 2021; 11:624129. [PMID: 33519527 PMCID: PMC7844309 DOI: 10.3389/fphys.2020.624129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Kyle E. Simpson
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ravichandra Venkateshappa
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Zhao Kai Pang
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shoaib Faizi
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Cardiovascular Science, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Tom W. Claydon
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
12
|
Bazmi M, Escobar AL. Excitation-Contraction Coupling in the Goldfish ( Carassius auratus) Intact Heart. Front Physiol 2020; 11:1103. [PMID: 33041845 PMCID: PMC7518121 DOI: 10.3389/fphys.2020.01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac physiology of fish models is an emerging field given the ease of genome editing and the development of transgenic models. Several studies have described the cardiac properties of zebrafish (Denio rerio). The goldfish (Carassius auratus) belongs to the same family as the zebrafish and has emerged as an alternative model with which to study cardiac function. Here, we propose to acutely study electrophysiological and systolic Ca2+ signaling in intact goldfish hearts. We assessed the Ca2+ dynamics and the electrophysiological cardiac function of goldfish, zebrafish, and mice models, using pulsed local field fluorescence microscopy, intracellular microelectrodes, and flash photolysis in perfused hearts. We observed goldfish ventricular action potentials (APs) and Ca2+ transients to be significantly longer when compared to the zebrafish. The action potential half duration at 50% (APD50) of goldfish was 370.38 ± 8.8 ms long, and in the zebrafish they were observed to be only 83.9 ± 9.4 ms. Additionally, the half duration of the Ca2+ transients was also longer for goldfish (402.1 ± 4.4 ms) compared to the zebrafish (99.1 ± 2.7 ms). Also, blocking of the L-type Ca2+ channels with nifedipine revealed this current has a major role in defining the amplitude and the duration of goldfish Ca2+ transients. Interestingly, nifedipine flash photolysis experiments in the intact heart identified whether or not the decrease in the amplitude of Ca2+ transients was due to shorter APs. Moreover, an increase in temperature and heart rate had a strong shortening effect on the AP and Ca2+ transients of goldfish hearts. Furthermore, ryanodine (Ry) and thapsigargin (Tg) significantly reduced the amplitude of the Ca2+ transients, induced a prolongation in the APs, and altogether exhibited the degree to which the Ca2+ release from the sarcoplasmic reticulum contributed to the Ca2+ transients. We conclude that the electrophysiological properties and Ca2+ signaling in intact goldfish hearts strongly resembles the endocardial layer of larger mammals.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| |
Collapse
|
13
|
Physiological phenotyping of the adult zebrafish heart. Mar Genomics 2020; 49:100701. [DOI: 10.1016/j.margen.2019.100701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
|
14
|
Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, Shafaattalab S, Tibbits GF, Claydon TW. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol Regul Integr Comp Physiol 2019; 317:R921-R931. [PMID: 31664867 DOI: 10.1152/ajpregu.00190.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuki Hobbs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
One fish, two fish, red fish, blue fish*: Zebrafish as a model for cardiac research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 138:1-2. [PMID: 30514520 DOI: 10.1016/j.pbiomolbio.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Stoyek MR, Rog-Zielinska EA, Quinn TA. Age-associated changes in electrical function of the zebrafish heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:91-104. [DOI: 10.1016/j.pbiomolbio.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
|
17
|
van Opbergen CJ, van der Voorn SM, Vos MA, de Boer TP, van Veen TA. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:45-58. [DOI: 10.1016/j.pbiomolbio.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|