1
|
Kodirov SA. Whole-cell patch-clamp recording and parameters. Biophys Rev 2023; 15:257-288. [PMID: 37124922 PMCID: PMC10133435 DOI: 10.1007/s12551-023-01055-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The patch-clamp technique represents an electrophysiology type of method. This is one of several insightful approaches with five major configurations, namely a loose patch, cell-attached (also known as on-cell), whole-cell, inside-out, and outside-out modes. The patch-clamp method is more advanced compared to classical electrophysiology since it elucidates single-channel activation in a tiny portion of the membrane in addition to action potential (AP), junction potential (JP), endplate potential (EP), electrical coupling between two adjacent cells via Gap junction hemi-channels, excitatory/inhibitory postsynaptic potentials, and resting membrane potential (RMP). In fact, a malfunction of only one channel or even one component will alter AP amplitude or duration in vitro. If parameters are inferred appropriately and recordings are performed properly, the patch-clamp trace readouts and results are robust. The main hallmarks of currents via voltage-dependent calcium (Cav), hyperpolarization-activated cyclic nucleotide gated non-selective cation (HCN), inwardly rectifying potassium (Kir), voltage-dependent potassium (Kv), and voltage-dependent sodium (Nav) channels are similar and tractable among cells even when they are derived from evolutionary distinct organs and species. However, the size of the membrane area, where the functional subunits reside, and current magnitudes vary among cells of the same type. Therefore, dividing current magnitudes by cell capacitance- current density enables the estimate of functional and active channels relative to recorded cytoplasmic membrane area. Since the patch-clamp recordings can be performed in both current- and voltage-clamp modes, the action potential or spike durations can be adequately elucidated. Sometimes, optical methods are preferred to patch-clamp electrophysiology, but the obtained signals and traces are not robust. Finally, not only an alternans of AP durations, but also that of 'action potential shape' is observed with electrophysiology.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- Almazov Federal Medical Research Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
2
|
O'Shea C, Winter J, Kabir SN, O'Reilly M, Wells SP, Baines O, Sommerfeld LC, Correia J, Lei M, Kirchhof P, Holmes AP, Fabritz L, Rajpoot K, Pavlovic D. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 2022; 9:135. [PMID: 35361792 PMCID: PMC8971487 DOI: 10.1038/s41597-022-01253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simon P Wells
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Joao Correia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
He S, Kou K, O'Shea C, Chen T, Mu-U-Min R, Dong R, Ren H, Zhou X, Fan Z, Tan X, Pavlovic D, Ou X, Lei M. A dataset of dual calcium and voltage optical mapping in healthy and hypertrophied murine hearts. Sci Data 2021; 8:314. [PMID: 34916511 PMCID: PMC8677726 DOI: 10.1038/s41597-021-01085-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Pathological hypertrophy underlies sudden cardiac death due to its high incidence of occurrence of ventricular arrhythmias. The alteration of transmural electrophysiological properties in hypertrophic cardiac murine tissue has never been explored previously. In this dataset, we have for the first time conducted high-throughput simultaneous optical imaging of transmembrane potential and calcium transients (CaT) throughout the entire hypertrophic murine hearts at high temporal and spatial resolution. Using ElectroMap, we have conducted multiple parameters analysis including action potential duration/calcium transient duration, conduction velocity, alternans and diastolic interval. Voltage-calcium latency was measured as time difference between action potential and CaT peak. The dataset therefore provides the first high spatial resolution transmural electrophysiological profiling of the murine heart, allowing interrogation of mechanisms driving ventricular arrhythmias associated with pathological hypertrophy. The dataset allows for further reuse and detailed analyses of geometrical, topological and functional analyses and reconstruction of 2-dimensional and 3-dimentional models.
Collapse
Affiliation(s)
- Shicheng He
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Razik Mu-U-Min
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ruirui Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Huiying Ren
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolin Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Tomek J, Wang ZJ, Burton RAB, Herring N, Bub G. COSMAS: a lightweight toolbox for cardiac optical mapping analysis. Sci Rep 2021; 11:9147. [PMID: 33911090 PMCID: PMC8080775 DOI: 10.1038/s41598-021-87402-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Optical mapping is widely used in experimental cardiology, as it allows visualization of cardiac membrane potential and calcium transients. However, optical mapping measurements from a single heart or cell culture can produce several gigabytes of data, warranting automated computer analysis. Here we present COSMAS, a software toolkit for automated analysis of optical mapping recordings in cardiac preparations. COSMAS generates activation and conduction velocity maps, as well as visualizations of action potential and calcium transient duration, S1-S2 protocol analysis, and alternans mapping. The software is built around our recent 'comb' algorithm for segmentation of action potentials and calcium transients, offering excellent performance and high resistance to noise. A core feature of our software is that it is based on scripting as opposed to relying on a graphical user interface for user input. The central role of scripts in the analysis pipeline enables batch processing and promotes reproducibility and transparency in the interpretation of large cardiac data sets. Finally, the code is designed to be easily extended, allowing researchers to add functionality if needed. COSMAS is provided in two languages, Matlab and Python, and is distributed with a user guide and sample scripts, so that accessibility to researchers is maximized.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK. .,Department of Computer Science, University of Oxford, Oxford, UK.
| | | | | | - Neil Herring
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
5
|
Toward more accurate data in cardiac cellular electrophysiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:1-2. [DOI: 10.1016/j.pbiomolbio.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|