1
|
Rihacek M, Kosaristanova L, Fialova T, Rypar T, Sterbova DS, Adam V, Zurek L, Cihalova K. Metabolic adaptations of Escherichia coli to extended zinc exposure: insights into tricarboxylic acid cycle and trehalose synthesis. BMC Microbiol 2024; 24:384. [PMID: 39354342 PMCID: PMC11443826 DOI: 10.1186/s12866-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
2
|
Hore PJ. Spin chemistry in living systems. Natl Sci Rev 2024; 11:nwae126. [PMID: 39144744 PMCID: PMC11321246 DOI: 10.1093/nsr/nwae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- P J Hore
- Department of Chemistry, Oxford University, UK
| |
Collapse
|
3
|
Zadeh-Haghighi H, Simon C. Magnetic isotope effects: a potential testing ground for quantum biology. Front Physiol 2023; 14:1338479. [PMID: 38148902 PMCID: PMC10750422 DOI: 10.3389/fphys.2023.1338479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
One possible explanation for magnetosensing in biology, such as avian magnetoreception, is based on the spin dynamics of certain chemical reactions that involve radical pairs. Radical pairs have been suggested to also play a role in anesthesia, hyperactivity, neurogenesis, circadian clock rhythm, microtubule assembly, etc. It thus seems critical to probe the credibility of such models. One way to do so is through isotope effects with different nuclear spins. Here we briefly review the papers involving spin-related isotope effects in biology. We suggest studying isotope effects can be an interesting avenue for quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Koltover VK. Magnetic isotope effects and nuclear spin catalysis in living cells and biomolecular motors: recent advances and future outlooks: Nuclear spin catalysis. Biophys Rev 2023; 15:999-1006. [PMID: 37974974 PMCID: PMC10643427 DOI: 10.1007/s12551-023-01162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Biomolecular nanoreactors are constructed from chemical elements many of which have magnetic and nonmagnetic stable isotopes. The magnetic isotope effects (MIE) were discovered in experiments with the cells enriched with different isotopes of magnesium, magnetic or nonmagnetic ones. The striking catalytic effect of the magnetic isotope, 25Mg, was revealed in the reaction of ATP hydrolysis driven by myosin, the biomolecular motor utilizing the chemical energy of ATP to perform the mechanical work. The rate of the enzymatic ATP hydrolysis with 25Mg as the enzyme cofactor is twice higher than the rates of the reactions with nonmagnetic 24Mg or 26Mg. A similar effect of the nuclear spin catalysis was revealed in the experiments with zinc as the myosin cofactor. MIE unambiguously indicate that, in the chemo-mechanical process catalyzed by the molecular motor, there is a limiting step which depends on the electron spin state of the reagents, and this step is accelerated by the nuclear spin of the magnetic isotope. The recent developments in this field highlight promising venues for future research of MIE in biophysics with possible applications of the magnetic isotopes in medical physics including radiation medicine and biomedical effects of electromagnetic fields.
Collapse
Affiliation(s)
- Vitaly K. Koltover
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow, Region 142432 Russian Federation
| |
Collapse
|
5
|
Zhang B, Yuan X, Lv H, Che J, Wang S, Shang P. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:14-23. [PMID: 36240898 DOI: 10.1016/j.pbiomolbio.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels. However. human subjects exposed to strong SMFs have reported side effects. In this review, we combined the magnetic properties of biological samples to illustrate the mechanism of action of SMFs on biological systems from a biophysical point of view. We suggest that the mechanisms of action of SMFs on biological systems mainly include the induction of electric fields and currents, generation of magnetic effects, and influence of electron spins. An electrolyte flowing in a static magnetic field generates an induced current and an electric field. Magnetomechanical effects include orientation effects upon subjecting biological samples to SMFs and movement of biological samples in strong field gradients. SMFs are thought to affect biochemical reaction rates and yields by influencing electron spin. This paper helps people how can harness the favorable biological effects of SMFs.
Collapse
Affiliation(s)
- Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China; Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, 215400, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518057, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
6
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
7
|
Fursov VV, Zinchenko DI, Namestnikova DD, Kuznetsov DA. In silico algorithm for optimization of pharmacokinetic studies of [25Mg2+]porphyrin-fullerene nanoparticles. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for effective pharmacophores to treat ischemic stroke is precipitated by the prevalence and high mortality of the condition. Optimization of preclinical scenarios for promising neuroprotectants by mathematical modeling using up-to-date computational platforms is a well-defined and urgent task. This study aimed to develop a drug-oriented model represented by an ordinary differential equation system to study pharmacokinetics of 25Mg2+-releasing porphyrin-fullerene nanocationite PMC16 in silico using MATLAB and adjust computating model's adequatness using in vivo rat model. The developed five-compartment model predicts the distribution of nanoparticles in organs and tissues (e.g. the brain, the heart and the liver) for the purpose of experimental parameters optimization. The in silico produced pharmacokinetic curves show good agreement with the data obtained using in vivo rat model of ischemic stroke. The in silico and in vivo results indicate that PMC16 nanoparticles effectively cross the blood-brain barrier.
Collapse
Affiliation(s)
- VV Fursov
- Mendeleev University of Chemical Technology, Moscow, Russia
| | - DI Zinchenko
- Mendeleev University of Chemical Technology, Moscow, Russia
| | - DD Namestnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - DA Kuznetsov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Abstract
The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs' effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.
Collapse
Affiliation(s)
- Santi Tofani
- Department of Medical Physics, Ivrea Hospital - ASL Torino Nord-Ovest TO4, Ivrea Torino, Italy.,Department of Public Health Science, School of Medicine, University of Turin, Ivrea Torino, Italy
| |
Collapse
|
9
|
Buchachenko AL. Compressed Molecules and Enzymes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A quantum-chemical analysis of the effect of a constant magnetic field on radical formation in the processes of chain oxidation of organic compounds by molecular oxygen is presented. The calculation of the total electronic energies and thermodynamic functions of the compounds involved in the reactions was performed by the density functional method with the hybrid exchange-correlation functional of Becke, Lee, Yang and Parr DFT B3LYP/6-311G** using the NWChem software package. The effect of the magnetic field on the individual stages of chain oxidation is associated with the evolution of radical pairs. It is assumed that the dipole–dipole interaction in a radical pair is not averaged by the diffusion of radicals and should be taken into account. To a large extent, the magnetic field effect (MFE) value is influenced by the ratio between the relaxation time of the oscillatory-excited state in the radical pair (tvib) and the relaxation time of the inter-combination transitions (tst). Although the developed technique refers to liquid-phase reactions, it can be used to study the MFE for oxidation of biologically significant compounds in multiphase systems, such as micelles, liposomes and membranes.
Collapse
|
11
|
Effect of weak alternating magnetic fields on planarian regeneration. Biochem Biophys Res Commun 2021; 592:7-12. [PMID: 35007847 DOI: 10.1016/j.bbrc.2021.12.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
We investigated the effect of weak combined magnetic field (CMF) on stem cell proliferation and regeneration of the planarian Schmidtea mediterranea. CMF parameters were set in accordance with Valery Lednev's theory of magnetic parametric resonance. It was shown that CMF with an amplitude of 74 μT and a frequency of 30 Hz accelerated the growth of the planarian head blastema by 25%. Alterations of the frequency in range from 27 to 33 Hz led to a complete disappearance of the effect. A further decrease in the CMF frequency inhibited regeneration. The maximum inhibition (24%) was observed at a frequency of 16 Hz. A further decrease in the CMF frequency (down to 13 Hz) led to disappearance of the described effect. Regeneration rate changes under the CMF are influenced by alterations in stem cell mitotic activity, which in turn depends on the wound-induced gene expression level. Thus, the CMF, preset in accordance to the Lednev's theory, can specifically influence the expression of regeneration-related genes and regeneration itself, what can find biomedical applications.
Collapse
|
12
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Magnesium magnetic isotope effects in microbiology. Arch Microbiol 2021; 203:1853-1861. [PMID: 33611633 DOI: 10.1007/s00203-021-02219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Two main properties of atomic nuclei-mass and nuclear magnetic moments-are origin of many biological effects. Mass-dependent isotope effects have been studied for a long time. The effect of magnetic isotopes having a magnetic moment and spin was first shown in the early twenty-first century for the magnetic isotope magnesium 25Mg on enzymatic ATP synthesis. This stimulated the search for experimental evidence and theoretical justification of magnetic nuclei influence on biological processes. This review contains the results of scientific research on the magnesium magnetic isotope effects in microbiology. Microorganisms have been found to be sensitive to the presence of nuclear magnetic moment of magnesium isotope 25Mg compared with non-magnetic 24,26Mg isotopes.
Collapse
|
14
|
Surazakov A, Klassen A, Gizinger O. The bioenergetics of COVID-19 immunopathology and the therapeutic potential of biophysical radiances. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112083. [PMID: 33221625 PMCID: PMC7659653 DOI: 10.1016/j.jphotobiol.2020.112083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
In developing an effective clinical tool against COVID-19, we need to consider why SARS-CoV-2 infections develop along remarkably different trajectories: from completely asymptomatic to a severe course of disease. In this paper we hypothesize that the progressive exhaustion and loss of lymphocytes associated with severe stages of COVID-19 result from an intracellular energy deficit in an organism which has already been depleted by preexisting chronic diseases, acute psychological stress and the aging process. A bioenergetics view of COVID-19 immunopathology opens a new biophysical opportunity to enhance impaired immune function via proposed pathways of photomagnetic catalysis of ATP synthesis, regenerative photobiomodulation and the ultrasonic acceleration of cell restructuring. Moreover, we suggest that a coherent application of multiple biophysical radiances (coMra) may synergistically enhance energy-matter-information kinetics of basal self-regeneration of cells and thus improve immune function and accelerate recovery. Bioenergetics offers a unifying framework of COVID-19 immunopathology. Functional reserve of immune cells depends on the kinetics of basal housekeeping. Various biophysical stimuli enhance the kinetics of cellular self-regeneration. A coherent application of multiple radiances has potential to treat COVID-19.
Collapse
Affiliation(s)
- Arzhan Surazakov
- Radiant Life Technologies, Ltd., 10 Chalkokondyli Street, Amaral 7, Office 101 Lykavitos, P.C.1071 Nicosia, Cyprus.
| | - Anna Klassen
- No affiliation, Valdayskaya 73, pos. Belmesevo, Barnaul, 656901, Russia
| | - Oksana Gizinger
- Department of Microbiology and Virology, Department of Immunology and Allergology, Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|