1
|
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2171. [PMID: 39124289 PMCID: PMC11313931 DOI: 10.3390/plants13152171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Withanolides are naturally occurring steroidal lactones found in certain species of the Withania genus, especially Withania somnifera (commonly known as Ashwagandha). These compounds have gained considerable attention due to their wide range of therapeutic properties and potential applications in modern medicine. To meet the rapidly growing demand for withanolides, innovative approaches such as in vitro culture techniques and synthetic biology offer promising solutions. In recent years, synthetic biology has enabled the production of engineered withanolides using heterologous systems, such as yeast and bacteria. Additionally, in vitro methods like cell suspension culture and hairy root culture have been employed to enhance withanolide production. Nevertheless, one of the primary obstacles to increasing the production of withanolides using these techniques has been the intricacy of the biosynthetic pathways for withanolides. The present article examines new developments in withanolide production through in vitro culture. A comprehensive summary of viable traditional methods for producing withanolide is also provided. The development of withanolide production in heterologous systems is examined and emphasized. The use of machine learning as a potent tool to model and improve the bioprocesses involved in the generation of withanolide is then discussed. In addition, the control and modification of the withanolide biosynthesis pathway by metabolic engineering mediated by CRISPR are discussed.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Shareen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Irfan Bashir Ganie
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Fatima Firdaus
- Chemistry Department, Lucknow University, Lucknow 226007, India;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Anwar Shahzad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| |
Collapse
|
2
|
Tian X, Zhang Z, Zhao Y, Tang A, Zeng Z, Zheng W, Zhang H, Luo Y, Lu W, Fan L, Shen L. Isolation and Characterization of Antioxidant Peptides from Dairy Cow ( Bos taurus) Placenta and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:913. [PMID: 39199159 PMCID: PMC11352039 DOI: 10.3390/antiox13080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Our preliminary study identified dairy cow placenta extract (CPE) as a mixture of peptides with potent antioxidant activity both in vivo and in vitro. However, the specific antioxidant peptides (AOPs) responsible for this activity were not yet identified. In the current study, we employed virtual screening and chromatography techniques to isolate two peptides, ANNGKQWAEVF (CP1) and QPGLPGPAG (CP2), from CPE. These peptides were found to be less stable under extreme conditions such as high temperature, strong acid, strong alkali, and simulated digestive conditions. Nevertheless, under normal physiological conditions, both CP1 and CP2 exhibited significant antioxidant properties, including free-radical scavenging, metal chelating, and the inhibition of lipid peroxidation. They also up-regulated the activities of intracellular antioxidant enzymes in response to hydrogen-peroxide-induced oxidative stress, resulting in reduced MDA levels, a decreased expression of the Keap1 gene and protein, and increased levels of the Nrf2 and HO-1 genes and proteins. Furthermore, CP1 demonstrated superior antioxidant activity compared to CP2. These findings suggest that CP1 and CP2 hold potential for mitigating oxidative stress in vitro and highlight the efficacy of virtual screening as a method for isolating AOPs within CPE.
Collapse
Affiliation(s)
- Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Wei Lu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| |
Collapse
|
3
|
Yabuuchi H, Fujiwara M, Shigemoto A, Hayashi K, Nomura Y, Nakashima M, Ogusu T, Mori M, Tokumoto SI, Miyai K. Structure-based chemical ontology improves chemometric prediction of antibacterial essential oils. Sci Rep 2024; 14:15014. [PMID: 38951169 PMCID: PMC11217266 DOI: 10.1038/s41598-024-65882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Plants are valuable resources for drug discovery as they produce diverse bioactive compounds. However, the chemical diversity makes it difficult to predict the biological activity of plant extracts via conventional chemometric methods. In this research, we propose a new computational model that integrates chemical composition data with structure-based chemical ontology. For a model validation, two training datasets were prepared from literature on antibacterial essential oils to classify active/inactive oils. Random forest classifiers constructed from the data showed improved prediction performance in both test datasets. Prior feature selection using hierarchical information criterion further improved the performance. Furthermore, an antibacterial assay using a standard strain of Staphylococcus aureus revealed that the classifier correctly predicted the activity of commercially available oils with an accuracy of 83% (= 10/12). The results of this study indicate that machine learning of chemical composition data integrated with chemical ontology can be a highly efficient approach for exploring bioactive plant extracts.
Collapse
Affiliation(s)
- Hiroaki Yabuuchi
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan.
- Kushimoto Branch, Shingu Health Center of Wakayama Prefecture, Wakayama, Japan.
| | - Makiko Fujiwara
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Akihiko Shigemoto
- Department of Digital Manufacturing, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Kazuhito Hayashi
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
- Tanabe Health Center of Wakayama Prefecture, Wakayama, Japan
| | - Yuhei Nomura
- Department of Digital Manufacturing, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Mayumi Nakashima
- Department of Digital Manufacturing, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Takeshi Ogusu
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Megumi Mori
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Shin-Ichi Tokumoto
- Department of Digital Manufacturing, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| | - Kazuyuki Miyai
- Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan
| |
Collapse
|
4
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
5
|
Islam MR, Osman OI, Hassan WMI. Identifying novel therapeutic inhibitors to target FMS-like tyrosine kinase-3 (FLT3) against acute myeloid leukemia: a molecular docking, molecular dynamics, and DFT study. J Biomol Struct Dyn 2024; 42:82-100. [PMID: 36995071 DOI: 10.1080/07391102.2023.2192798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Around 30% of acute myeloid leukemia (AML) patients have triggering mutations in Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3), which has been suggested as a possible therapeutic candidate for AML therapy. Many tyrosine kinase inhibitors are available and have a wide variety of applications in the treatment of cancer by inhibiting subsequent steps of cell proliferation. Therefore, our study aims to identify effective antileukemic agents against FLT3 gene. Initially, well-known antileukemic drug candidates have been chosen to generate a structure-based pharmacophore model to assist the virtual screening of 217,77,093 compounds from the Zinc database. The final hits compounds were retrieved and evaluated by docking against the target protein, where the top four compounds have been selected for the analysis of ADMET. Based on the density functional theory (DFT), the geometry optimization, frontier molecular orbital (FMO), HOMO-LUMO, and global reactivity descriptor values have been evaluated that confirming a satisfactory profile and reactivity order for the selected candidates. In comparison to control compounds, the docking results revealed that the four compounds had substantial binding energies (-11.1 to -11.5 kcal/mol) with FLT3. The physicochemical and ADMET (adsorption, distribution, metabolism, excretion, toxicity) prediction results corresponded to the bioactive and safe candidates. Molecular dynamics (MD) confirmed the better binding affinity and stability compared to gilteritinib as a potential FLT3 inhibitor. In this study, a computational approach has been performed that found a better docking and dynamics score against target proteins, indicating potent and safe antileukemic agents, furthermore in-vivo and in-vitro investigations are recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, Bangladesh
| | - Osman I Osman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Walid M I Hassan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2023:1-14. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
7
|
Bharadvaja N, Gautam S, Singh H. Natural polyphenols: a promising bioactive compounds for skin care and cosmetics. Mol Biol Rep 2023; 50:1817-1828. [PMID: 36494596 DOI: 10.1007/s11033-022-08156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
The physiological and morphological aspects of skin suffer from frequent change. Numerous internal and external factors have direct impact on inducing various skin problems like inflammation, aging, cancer, oxidative stress, hyperpigmentation etc. The use of plant polyphenols as a photo-ecting agent is gaining popularity nowadays. Polyphenols are known to enhance endogenic antioxidant system of skin thereby preventing various skin diseases. The biological activity of plant polyphenols is dependent on their physicochemical properties for overcoming the epidermal barriers to reach the specific receptor. Several evidences have reported the vital role polyphenols in mitigating adverse skin problems and reverting back the healthy skin condition. The interest in plant derived skin care products is emerging due to the changing notion of people to shift their focus towards use of plant-based products. The present review draws an attention to uncover the protective role of polyphenols in prevention of various skin problems. Several in vitro and in vivo studies have been summarized that claims the efficacious nature of plant extract having dermatological significance.
Collapse
Affiliation(s)
- Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| | - Shruti Gautam
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Harshita Singh
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
8
|
Viswanathan P, Gosukonda JS, Sherman SH, Joshee N, Gosukonda RM. Prediction of In vitro organogenesis of Bacopa monnieri using artificial neural networks and regression models. Heliyon 2022; 8:e11969. [PMID: 36544836 PMCID: PMC9761605 DOI: 10.1016/j.heliyon.2022.e11969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to determine if artificial neural networks (ANN) can be used to accurately predict in vitro organogenesis of Bacopa monnieri compared with statistical regression. Prediction models were developed for shoot and root organogenesis (outputs) on two culture media (Murashige and Skoog and Gamborg B5) affected by two explant types (leaf and node) and two cytokinins (6-Benzylaminopurine and Thidiazuron at 1.0, 5.0, and 10.0 μM levels) with and without the addition of auxin (1-Naphthaleneacetic acid 0.1 μM) (inputs). Categorical data were encoded in numeric form using one-hot encoding technique. Backpropagation (BP) and Kalman filter (KF) learning algorithms were used to develop nonparametric models between inputs and outputs. Correlations between predicted and observed outputs (validation dataset) were similar in both ANN-BP (R values = 0.77, 0.71, 0.68, and 0.48), and ANN-KF (R values = 0.79, 0.68, 0.75, and 0.49), and were higher than regression (R values = 0.13, 0.48, 0.39, and 0.37) models for shoots and roots from leaf and node explants, respectively. Because ANN models have the ability to interpolate from unseen data, they could be used as an effective tool in accurately predicting the in vitro growth kinetics of Bacopa cultures.
Collapse
Affiliation(s)
- Pavitra Viswanathan
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA,Department of Bioinformatics, Boston University, Boston, MA 02115, USA
| | - Jaabili S. Gosukonda
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA,Houston County High School, Warner Robins, GA 31088, USA
| | - Samantha H. Sherman
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA
| | - Nirmal Joshee
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA
| | - Ramana M. Gosukonda
- Department of Agricultural Sciences, College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, GA 31030, USA,Corresponding author.
| |
Collapse
|
9
|
Awal MA, Nur SM, Al Khalaf AK, Rehan M, Ahmad A, Hosawi SBI, Choudhry H, Khan MI. Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity. Front Genet 2022; 13:928884. [PMID: 35991572 PMCID: PMC9382028 DOI: 10.3389/fgene.2022.928884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.
Collapse
Affiliation(s)
- Md Abdul Awal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Khalaf Al Khalaf
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Salman Bakr I. Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammad Imran Khan,
| |
Collapse
|
10
|
Pirintsos S, Panagiotopoulos A, Bariotakis M, Daskalakis V, Lionis C, Sourvinos G, Karakasiliotis I, Kampa M, Castanas E. From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules 2022; 27:4060. [PMID: 35807306 PMCID: PMC9268545 DOI: 10.3390/molecules27134060] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ethnopharmacology, through the description of the beneficial effects of plants, has provided an early framework for the therapeutic use of natural compounds. Natural products, either in their native form or after crude extraction of their active ingredients, have long been used by different populations and explored as invaluable sources for drug design. The transition from traditional ethnopharmacology to drug discovery has followed a straightforward path, assisted by the evolution of isolation and characterization methods, the increase in computational power, and the development of specific chemoinformatic methods. The deriving extensive exploitation of the natural product chemical space has led to the discovery of novel compounds with pharmaceutical properties, although this was not followed by an analogous increase in novel drugs. In this work, we discuss the evolution of ideas and methods, from traditional ethnopharmacology to in silico drug discovery, applied to natural products. We point out that, in the past, the starting point was the plant itself, identified by sustained ethnopharmacological research, with the active compound deriving after extensive analysis and testing. In contrast, in recent years, the active substance has been pinpointed by computational methods (in silico docking and molecular dynamics, network pharmacology), followed by the identification of the plant(s) containing the active ingredient, identified by existing or putative ethnopharmacological information. We further stress the potential pitfalls of recent in silico methods and discuss the absolute need for in vitro and in vivo validation as an absolute requirement. Finally, we present our contribution to natural products' drug discovery by discussing specific examples, applying the whole continuum of this rapidly evolving field. In detail, we report the isolation of novel antiviral compounds, based on natural products active against influenza and SARS-CoV-2 and novel substances active on a specific GPCR, OXER1.
Collapse
Affiliation(s)
- Stergios Pirintsos
- Department of Biology, School of Sciences and Technology, University of Crete, 71409 Heraklion, Greece;
- Botanical Garden, University of Crete, 74100 Rethymnon, Greece
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece; (C.L.); (G.S.); (M.K.)
| | - Athanasios Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71409 Heraklion, Greece;
| | - Michalis Bariotakis
- Department of Biology, School of Sciences and Technology, University of Crete, 71409 Heraklion, Greece;
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3603, Cyprus;
| | - Christos Lionis
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece; (C.L.); (G.S.); (M.K.)
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71409 Heraklion, Greece
| | - George Sourvinos
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece; (C.L.); (G.S.); (M.K.)
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71409 Heraklion, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Marilena Kampa
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece; (C.L.); (G.S.); (M.K.)
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71409 Heraklion, Greece;
| | - Elias Castanas
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece; (C.L.); (G.S.); (M.K.)
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71409 Heraklion, Greece;
| |
Collapse
|
11
|
The Health Effects of Dietary Supplements. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9851048. [PMID: 35685726 PMCID: PMC9173988 DOI: 10.1155/2022/9851048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
|
12
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
13
|
Islam MR, Awal MA, Khames A, Abourehab MAS, Samad A, Hassan WMI, Alam R, Osman OI, Nur SM, Molla MHR, Abdulrahman AO, Rajia S, Ahammad F, Hasan MN, Qadri I, Kim B. Computational Identification of Druggable Bioactive Compounds from Catharanthus roseus and Avicennia marina against Colorectal Cancer by Targeting Thymidylate Synthase. Molecules 2022; 27:2089. [PMID: 35408488 PMCID: PMC9000506 DOI: 10.3390/molecules27072089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.R.I.); (W.M.I.H.); (O.I.O.)
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
- Department of Pharmacy, Varendra University, Rajshahi 6204, Bangladesh;
| | - Md Abdul Awal
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (S.M.N.); (A.O.A.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammad A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.S.); (R.A.)
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore 7408, Bangladesh
| | - Walid M. I. Hassan
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.R.I.); (W.M.I.H.); (O.I.O.)
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.S.); (R.A.)
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore 7408, Bangladesh
| | - Osman I. Osman
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.R.I.); (W.M.I.H.); (O.I.O.)
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (S.M.N.); (A.O.A.)
| | | | - Abdulrasheed O. Abdulrahman
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (S.M.N.); (A.O.A.)
- Institut Cochin, Université de Paris, Inserm, 75014 Paris, France
| | - Sultana Rajia
- Department of Pharmacy, Varendra University, Rajshahi 6204, Bangladesh;
- Center for Interdisciplinary Research (CIR), Varendra University, Rajshahi 6204, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore 7408, Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.S.); (R.A.)
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
Potential Anti- Mycobacterium tuberculosis Activity of Plant Secondary Metabolites: Insight with Molecular Docking Interactions. Antioxidants (Basel) 2021; 10:antiox10121990. [PMID: 34943093 PMCID: PMC8750514 DOI: 10.3390/antiox10121990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to “thwart” disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.
Collapse
|
15
|
Molecular modeling piloted analysis for semicarbazone derivative of curcumin as a potent Abl-kinase inhibitor targeting colon cancer. 3 Biotech 2021; 11:506. [PMID: 34840927 PMCID: PMC8606278 DOI: 10.1007/s13205-021-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin’s IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy.
Collapse
|