1
|
Liu L, Qian J, Yan W, Liu X, Zhao Y, Che L. Relationship between hyperglycaemia at admission and prognosis in patients with acute myocardial infarction: a retrospective cohort study. Postgrad Med J 2022:7148071. [PMID: 37130824 DOI: 10.1136/pmj-2021-141454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/05/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The optimal threshold of hyperglycaemia at admission for identifying high-risk individuals in patients with acute myocardial infarction (AMI) and its impact on clinical prognosis are still unclear. METHODS We retrospectively reviewed 2027 patients with AMI admitted from June 2001 to December 2012 in the 'Medical Information Mart for Intensive Care III' database. The significant cut-off values of admission blood glucose (Glucose_0) for predicting hospital mortality in patients with AMI with and without diabetes were obtained from the receiver operating characteristic (ROC) curve, then patients were assigned to hyperglycaemia and non-hyperglycaemia groups based on corresponding cut-off values. The primary endpoints were the hospital and 1-year mortality. RESULTS Among 2027 patients, death occurred in 311 patients (15.3%). According to the ROC curve, the significant cut-off values of Glucose_0 to predict hospital mortality were 224.5 and 139.5 mg/dL in patients with diabetes and without diabetes, respectively. The crude hospital and 1-year mortality of the hyperglycaemia subgroup were higher than the corresponding non-hyperglycaemia group (p< 0.01). After adjustment, regardless of the state of diabetes, hyperglycaemia at admission was related to significantly increased hospital mortality in patients with AMI. For patients with AMI without diabetes, hyperglycaemia at admission was positively correlated with the increase of 1-year mortality (HR, 1.47; 95% CI 1.18 to 1.82; p=0.001). Nevertheless, this trend disappeared in those with diabetes (HR, 1.35; 95% CI 0.93 to 1.95; p=0.113). CONCLUSION Hyperglycaemia at admission was an independent predictor for mortality during hospitalisation and at 1-year in patients with AMI, especially in patients without diabetes.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Qian
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenwen Yan
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebo Liu
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya Zhao
- Department of Cardiology, Kong Jiang Hospital Of Yangpu District, Shanghai, China
| | - Lin Che
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Koracevic G, Micic S, Stojanovic M, Radovanovic RV, Pavlovic MP, Kostic T, Djordjevic D, Antonijevic N, Koracevic M, Atanaskovic V, Dakic S. Beta Blockers can mask not only Hypoglycemia, but also Hypotension. Curr Pharm Des 2022; 28:1660-1668. [DOI: 10.2174/1381612828666220421135523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Background:
Beta-adrenergic (β-AR) receptor blockers (BBs) are an essential class of drugs as they have numerous indications. On the other hand, they have numerous unwanted effects which decrease the compliance, adherence, and persistence of this very useful group of drugs.
Objective:
The paper aims to analyze the possibility that an unnoticed side effect may contribute to a less favorable pharmacologic profile of BBs, e.g., a diminished reaction to a sudden fall in BP.
Methods:
We searched two medical databases for abstracts and citations (Medline and SCOPUS). Moreover, we searched the internet for drug prescription leaflets (of the individual BBs).
Results:
Whichever cause of stress is considered, the somatic manifestations of stress will be (partially) masked if a patient takes BB. Stress–induced hypercatecholaminemia acts on β-AR of cardiomyocytes; it increases heart rate and contractility, effects suppressed by BBs. The answers of the organism to hypoglycemia and hypotension share the main mechanisms such as sympathetic nervous system activation and hypercatecholaminemia. Thus, there is a striking analogy: BBs can cover up symptoms of both hypoglycemia (which is widely known) and of hypotension (which is not recognized). It is widely known that BBs can cause hypotension. However, they can also complicate recovery by spoiling the defense mechanisms in hypotension as they interfere with the crucial compensatory reflex to increase blood pressure in hypotension.
Conclusion:
Beta blockers can cause hypotension, mask it, and make recovery more difficult. This is clinically important and deserves to be more investigated and probably to be stated as a warning.
Collapse
Affiliation(s)
- Goran Koracevic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| | | | | | | | - Milan Pavlovic Pavlovic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Tomislav Kostic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Dragan Djordjevic
- Faculty of Medicine, University of Nis, Nis, Serbia
- Institute for Treatment and Rehabilitation Niska Banja, Nis, Serbia
| | - Nebojsa Antonijevic
- Clinic for Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Maja Koracevic
- Faculty of Medicine, University of Nis, Nis, Serbia
- Innovation Centre, University of Nis, Nis, Serbia
| | - Vesna Atanaskovic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| | - Sonja Dakic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| |
Collapse
|
3
|
Sia CH, Chan MHH, Zheng H, Ko J, Ho AFW, Chong J, Foo D, Foo LL, Lim PZY, Liew BW, Chai P, Yeo TC, Tan HC, Chua T, Chan MYY, Tan JWC, Bulluck H, Hausenloy DJ. Optimal glucose, HbA1c, glucose-HbA1c ratio and stress-hyperglycaemia ratio cut-off values for predicting 1-year mortality in diabetic and non-diabetic acute myocardial infarction patients. Cardiovasc Diabetol 2021; 20:211. [PMID: 34666746 PMCID: PMC8524932 DOI: 10.1186/s12933-021-01395-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Background Stress-induced hyperglycaemia at time of hospital admission has been linked to worse prognosis following acute myocardial infarction (AMI). In addition to glucose, other glucose-related indices, such as HbA1c, glucose-HbA1c ratio (GHR), and stress-hyperglycaemia ratio (SHR) are potential predictors of clinical outcomes following AMI. However, the optimal blood glucose, HbA1c, GHR, and SHR cut-off values for predicting adverse outcomes post-AMI are unknown. As such, we determined the optimal blood glucose, HbA1c, GHR, and SHR cut-off values for predicting 1-year all cause mortality in diabetic and non-diabetic ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) patients. Methods We undertook a national, registry-based study of patients with AMI from January 2008 to December 2015. We determined the optimal blood glucose, HbA1c, GHR, and SHR cut-off values using the Youden’s formula for 1-year all-cause mortality. We subsequently analyzed the sensitivity, specificity, positive and negative predictive values of the cut-off values in the diabetic and non-diabetic subgroups, stratified by the type of AMI. Results There were 5841 STEMI and 4105 NSTEMI in the study. In STEMI patients, glucose, GHR, and SHR were independent predictors of 1-year all-cause mortality [glucose: OR 2.19 (95% CI 1.74–2.76); GHR: OR 2.28 (95% CI 1.80–2.89); SHR: OR 2.20 (95% CI 1.73–2.79)]. However, in NSTEMI patients, glucose and HbA1c were independently associated with 1-year all-cause mortality [glucose: OR 1.38 (95% CI 1.01–1.90); HbA1c: OR 2.11 (95% CI 1.15–3.88)]. In diabetic STEMI patients, SHR performed the best in terms of area-under-the-curve (AUC) analysis (glucose: AUC 63.3%, 95% CI 59.5–67.2; GHR 68.8% 95% CI 64.8–72.8; SHR: AUC 69.3%, 95% CI 65.4–73.2). However, in non-diabetic STEMI patients, glucose, GHR, and SHR performed equally well (glucose: AUC 72.0%, 95% CI 67.7–76.3; GHR 71.9% 95% CI 67.7–76.2; SHR: AUC 71.7%, 95% CI 67.4–76.0). In NSTEMI patients, glucose performed better than HbA1c for both diabetic and non-diabetic patients in AUC analysis (For diabetic, glucose: AUC 52.8%, 95% CI 48.1–57.6; HbA1c: AUC 42.5%, 95% CI 37.6–47. For non-diabetic, glucose: AUC 62.0%, 95% CI 54.1–70.0; HbA1c: AUC 51.1%, 95% CI 43.3–58.9). The optimal cut-off values for glucose, GHR, and SHR in STEMI patients were 15.0 mmol/L, 2.11, and 1.68 for diabetic and 10.6 mmol/L, 1.72, and 1.51 for non-diabetic patients respectively. For NSTEMI patients, the optimal glucose values were 10.7 mmol/L for diabetic and 8.1 mmol/L for non-diabetic patients. Conclusions SHR was the most consistent independent predictor of 1-year all-cause mortality in both diabetic and non-diabetic STEMI, whereas glucose was the best predictor in NSTEMI patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01395-3.
Collapse
Affiliation(s)
- Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mervyn Huan-Hao Chan
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Level 8, Singapore, 169857, Singapore
| | - Huili Zheng
- Health Promotion Board, National Registry of Diseases Office, Singapore, Singapore
| | - Junsuk Ko
- MD Program, Duke-NUS Medical School, Singapore, Singapore
| | - Andrew Fu-Wah Ho
- SingHealth Duke-NUS Emergency Medicine Academic Clinical Programme, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Pre-Hospital and Emergency Care Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Chong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - David Foo
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Ling-Li Foo
- Health Promotion Board, National Registry of Diseases Office, Singapore, Singapore
| | | | | | - Ping Chai
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tiong-Cheng Yeo
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huay-Cheem Tan
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Terrance Chua
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Mark Yan-Yee Chan
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jack Wei Chieh Tan
- Pre-Hospital and Emergency Care Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Heerajnarain Bulluck
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,Department of Cardiology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Derek J Hausenloy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Level 8, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore. .,The Hatter Cardiovascular Institute, University College London, London, UK. .,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan.
| |
Collapse
|
5
|
Zhang L, Wang Z, Xu F, Han D, Li S, Yin H, Lyu J. Effects of Stress Hyperglycemia on Short-Term Prognosis of Patients Without Diabetes Mellitus in Coronary Care Unit. Front Cardiovasc Med 2021; 8:683932. [PMID: 34095265 PMCID: PMC8169960 DOI: 10.3389/fcvm.2021.683932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Diabetes mellitus (DM) has a high morbidity and mortality worldwide, and it is a risk factor for cardiovascular diseases. Non-diabetic stress hyperglycemia is common in severely ill patients, and it could affect prognosis. This study aimed to analyze the influence of different blood glucose levels on prognosis from the perspective of stress hyperglycemia by comparing them with normal blood glucose levels and those of patients with DM. Methods: A retrospective study of 1,401 patients in coronary care unit (CCU) from the critical care database called Medical Information Mart for Intensive Care IV was performed. Patients were assigned to the following groups 1–4 based on their history of DM, random blood glucose, and HbA1c levels: normal blood glucose group, moderate stress hyperglycemia group, severe stress hyperglycemia group and DM group. The main outcome of this study was 30- and 90-day mortality rates. The associations between groups and outcomes were analyzed using Kaplan–Meier survival analysis, Cox proportional hazard regression model and competing risk regression model. Results: A total of 1,401 patients in CCU were enrolled in this study. The Kaplan–Meier survival curve showed that group 1 had a higher survival probability than groups 3 and 4 in terms of 30- and 90-day mortalities. After controlling the potential confounders in Cox regression, groups 3 and 4 had a statistically significant higher risk of both mortalities than group 1, while no difference in mortality risk was found between groups 2 and 1. The hazard ratios [95% confidence interval (CI)] of 30- and 90-day mortality rates for group 3 were 2.77(1.39,5.54) and 2.59(1.31,5.12), respectively, while those for group 4 were 1.92(1.08,3.40) and 1.94(1.11,3.37), respectively. Conclusions: Severe stress hyperglycemia (≥200 mg/dL) in patients without DM in CCU may increase the risk of short-term death, which is greater than the prognostic effect in patients with diabetes. Patients with normal blood glucose levels and moderate stress hyperglycemia (140 mg/dL ≤ RBG <200 mg/dL) had no effect on short-term outcomes in patients with CCU.
Collapse
Affiliation(s)
- Luming Zhang
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zichen Wang
- Department of Public Health, University of California, Irvine, Irvine, CA, United States
| | - Fengshuo Xu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Didi Han
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shaojin Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Liu W, Li Z, Xing S, Xu Y. Effect of Admission Hyperglycemia on Short-Term Prognosis of Patients with Non-ST Elevation Acute Coronary Syndrome without Diabetes Mellitus. J Diabetes Res 2021; 2021:1321289. [PMID: 34912898 PMCID: PMC8668326 DOI: 10.1155/2021/1321289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate the effect of admission hyperglycemia on the short-term prognosis of patients with non-ST elevation acute coronary syndrome (NSTE-ACS) without diabetes mellitus. METHODS The clinical data of 498 patients with NSTE-ACS admitted to the Department of Cardiology of the First Affiliated Hospital of Henan University of Science and Technology between March 2018 and November 2020 were analyzed. Based on the blood glucose (BG) level at admission, patients were divided into three groups: A (BG < 7.8 mmol/L), B (7.8 mmol/L ≤ BG < 11.1 mmol/L), and C (BG ≥ 11.1 mmol/L). The clinical data of the three groups were compared. RESULTS There was no significant difference between the three groups in terms of age, sex, hypertension, hyperlipidemia, smoking, and history of myocardial infarction (p > 0.05). However, there were significant differences in the incidences of multivessel disease, renal insufficiency, pump failure, and emergency percutaneous coronary intervention, and levels of high-sensitivity C-reactive protein, cardiac troponin T, and creatine kinase isoenzyme MB among the three groups (p < 0.05 for all). The incidences of severe pump failure, malignant arrhythmias, and death were significantly higher in groups B and C compared to group A (p < 0.05). Additionally, the incidences of severe pump failure, malignant arrhythmias, and death were significantly higher in group C compared to group B (p < 0.05). Multivariate logistic regression analysis showed that hyperglycemia, renal insufficiency, Killip grade III/IV, and age were risk factors of in-hospital death. CONCLUSION Hyperglycemia at admission is a risk factor for adverse in-hospital clinical outcomes in patients with NSTE-ACS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhijuan Li
- Department of Cardiology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiying Xing
- Department of Cardiology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanwei Xu
- School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|